Cargando…
Which Is Better: Holdout or Full-Sample Classifier Design?
Is it better to design a classifier and estimate its error on the full sample or to design a classifier on a training subset and estimate its error on the holdout test subset? Full-sample design provides the better classifier; nevertheless, one might choose holdout with the hope of better error esti...
Autores principales: | Brun, Marcel, Xu, Qian, Dougherty, Edward R |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171393/ https://www.ncbi.nlm.nih.gov/pubmed/18483613 http://dx.doi.org/10.1155/2008/297945 |
Ejemplares similares
-
Characterizing the last holdouts
por: Stewart, Erin L., et al.
Publicado: (2017) -
Repeated holdout validation for weighted quantile sum regression
por: Tanner, Eva M., et al.
Publicado: (2019) -
Holdout-Based Empirical Assessment of Mixed-Type Synthetic Data
por: Platzer, Michael, et al.
Publicado: (2021) -
Multiple Holdouts With Stability: Improving the Generalizability of Machine Learning Analyses of Brain–Behavior Relationships
por: Mihalik, Agoston, et al.
Publicado: (2020) -
COVID-19 Vaccine Mandates: Attitudes and Effects on Holdouts in a Large Australian University Population
por: Attwell, Katie, et al.
Publicado: (2022)