Cargando…
Detecting Periodic Genes from Irregularly Sampled Gene Expressions: A Comparison Study
Time series microarray measurements of gene expressions have been exploited to discover genes involved in cell cycles. Due to experimental constraints, most microarray observations are obtained through irregular sampling. In this paper three popular spectral analysis schemes, namely, Lomb-Scargle, C...
Autores principales: | Zhao, Wentao, Agyepong, Kwadwo, Serpedin, Erchin, Dougherty, Edward R |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171399/ https://www.ncbi.nlm.nih.gov/pubmed/18584052 http://dx.doi.org/10.1155/2008/769293 |
Ejemplares similares
-
Spectral Analysis on Time-Course Expression Data: Detecting Periodic Genes Using a Real-Valued Iterative Adaptive Approach
por: Agyepong, Kwadwo S., et al.
Publicado: (2013) -
Identifying Genes Involved in Cyclic Processes by Combining Gene Expression Analysis and Prior Knowledge
por: Zhao, Wentao, et al.
Publicado: (2009) -
Spectral Preprocessing for Clustering Time-Series Gene Expressions
por: Zhao, Wentao, et al.
Publicado: (2009) -
Recovering Genetic Regulatory Networks from Chromatin Immunoprecipitation and Steady-State Microarray Data
por: Zhao, Wentao, et al.
Publicado: (2008) -
Deep learning for ECG Arrhythmia detection and classification: an overview of progress for period 2017–2023
por: Ansari, Yaqoob, et al.
Publicado: (2023)