Cargando…
Inference of Boolean Networks Using Sensitivity Regularization
The inference of genetic regulatory networks from global measurements of gene expressions is an important problem in computational biology. Recent studies suggest that such dynamical molecular systems are poised at a critical phase transition between an ordered and a disordered phase, affording the...
Autores principales: | Liu, Wenbin, Lähdesmäki, Harri, Dougherty, Edward R, Shmulevich, Ilya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171400/ https://www.ncbi.nlm.nih.gov/pubmed/18604289 http://dx.doi.org/10.1155/2008/780541 |
Ejemplares similares
-
Steady-State Analysis of Genetic Regulatory Networks Modelled by
Probabilistic Boolean Networks
por: Shmulevich, Ilya, et al.
Publicado: (2003) -
Probabilistic boolean networks predict transcription factor targets to induce transdifferentiation
por: Tercan, Bahar, et al.
Publicado: (2022) -
Intervention in Context-Sensitive Probabilistic Boolean Networks Revisited
por: Faryabi, Babak, et al.
Publicado: (2009) -
Inference of a Probabilistic Boolean Network from a Single Observed Temporal Sequence
por: Marshall, Stephen, et al.
Publicado: (2007) -
Learning restricted Boolean network model by time-series data
por: Ouyang, Hongjia, et al.
Publicado: (2014)