Cargando…
A Bayesian Network View on Nested Effects Models
Nested effects models (NEMs) are a class of probabilistic models that were designed to reconstruct a hidden signalling structure from a large set of observable effects caused by active interventions into the signalling pathway. We give a more flexible formulation of NEMs in the language of Bayesian...
Autores principales: | Zeller, Cordula, Fröhlich, Holger, Tresch, Achim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171420/ https://www.ncbi.nlm.nih.gov/pubmed/19148294 http://dx.doi.org/10.1155/2009/195272 |
Ejemplares similares
-
Estimating large-scale signaling networks through nested effect models with intervention effects from microarray data
por: Fröhlich, Holger, et al.
Publicado: (2008) -
Dynamic Bayesian Network Modeling of the Interplay between EGFR and Hedgehog Signaling
por: Fröhlich, Holger, et al.
Publicado: (2015) -
Inferring modulators of genetic interactions with epistatic nested effects models
por: Pirkl, Martin, et al.
Publicado: (2017) -
Unsupervised automated high throughput phenotyping of RNAi time-lapse movies
por: Failmezger, Henrik, et al.
Publicado: (2013) -
NEMix: Single-cell Nested Effects Models for Probabilistic Pathway Stimulation
por: Siebourg-Polster, Juliane, et al.
Publicado: (2015)