Cargando…
Clustering of Gene Expression Data Based on Shape Similarity
A method for gene clustering from expression profiles using shape information is presented. The conventional clustering approaches such as K-means assume that genes with similar functions have similar expression levels and hence allocate genes with similar expression levels into the same cluster. Ho...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171421/ https://www.ncbi.nlm.nih.gov/pubmed/19404484 http://dx.doi.org/10.1155/2009/195712 |
_version_ | 1782211758873640960 |
---|---|
author | Hestilow, Travis J Huang, Yufei |
author_facet | Hestilow, Travis J Huang, Yufei |
author_sort | Hestilow, Travis J |
collection | PubMed |
description | A method for gene clustering from expression profiles using shape information is presented. The conventional clustering approaches such as K-means assume that genes with similar functions have similar expression levels and hence allocate genes with similar expression levels into the same cluster. However, genes with similar function often exhibit similarity in signal shape even though the expression magnitude can be far apart. Therefore, this investigation studies clustering according to signal shape similarity. This shape information is captured in the form of normalized and time-scaled forward first differences, which then are subject to a variational Bayes clustering plus a non-Bayesian (Silhouette) cluster statistic. The statistic shows an improved ability to identify the correct number of clusters and assign the components of cluster. Based on initial results for both generated test data and Escherichia coli microarray expression data and initial validation of the Escherichia coli results, it is shown that the method has promise in being able to better cluster time-series microarray data according to shape similarity. |
format | Online Article Text |
id | pubmed-3171421 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Springer |
record_format | MEDLINE/PubMed |
spelling | pubmed-31714212011-09-13 Clustering of Gene Expression Data Based on Shape Similarity Hestilow, Travis J Huang, Yufei EURASIP J Bioinform Syst Biol Research Article A method for gene clustering from expression profiles using shape information is presented. The conventional clustering approaches such as K-means assume that genes with similar functions have similar expression levels and hence allocate genes with similar expression levels into the same cluster. However, genes with similar function often exhibit similarity in signal shape even though the expression magnitude can be far apart. Therefore, this investigation studies clustering according to signal shape similarity. This shape information is captured in the form of normalized and time-scaled forward first differences, which then are subject to a variational Bayes clustering plus a non-Bayesian (Silhouette) cluster statistic. The statistic shows an improved ability to identify the correct number of clusters and assign the components of cluster. Based on initial results for both generated test data and Escherichia coli microarray expression data and initial validation of the Escherichia coli results, it is shown that the method has promise in being able to better cluster time-series microarray data according to shape similarity. Springer 2009-03-04 /pmc/articles/PMC3171421/ /pubmed/19404484 http://dx.doi.org/10.1155/2009/195712 Text en Copyright © 2009 T. J. Hestilow and Y. Huang. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Hestilow, Travis J Huang, Yufei Clustering of Gene Expression Data Based on Shape Similarity |
title | Clustering of Gene Expression Data Based on Shape Similarity |
title_full | Clustering of Gene Expression Data Based on Shape Similarity |
title_fullStr | Clustering of Gene Expression Data Based on Shape Similarity |
title_full_unstemmed | Clustering of Gene Expression Data Based on Shape Similarity |
title_short | Clustering of Gene Expression Data Based on Shape Similarity |
title_sort | clustering of gene expression data based on shape similarity |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171421/ https://www.ncbi.nlm.nih.gov/pubmed/19404484 http://dx.doi.org/10.1155/2009/195712 |
work_keys_str_mv | AT hestilowtravisj clusteringofgeneexpressiondatabasedonshapesimilarity AT huangyufei clusteringofgeneexpressiondatabasedonshapesimilarity |