Cargando…
On the Impact of Entropy Estimation on Transcriptional Regulatory Network Inference Based on Mutual Information
The reverse engineering of transcription regulatory networks from expression data is gaining large interest in the bioinformatics community. An important family of inference techniques is represented by algorithms based on information theoretic measures which rely on the computation of pairwise mutu...
Autores principales: | Olsen, Catharina, Meyer, Patrick E, Bontempi, Gianluca |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171423/ https://www.ncbi.nlm.nih.gov/pubmed/19148299 http://dx.doi.org/10.1155/2009/308959 |
Ejemplares similares
-
minet: A R/Bioconductor Package for Inferring Large Transcriptional Networks Using Mutual Information
por: Meyer, Patrick E, et al.
Publicado: (2008) -
Information-Theoretic Inference of Large Transcriptional Regulatory Networks
por: Meyer, Patrick E, et al.
Publicado: (2007) -
Parallel mutual information estimation for inferring gene regulatory networks on GPUs
por: Shi, Haixiang, et al.
Publicado: (2011) -
MIDER: Network Inference with Mutual Information Distance and Entropy Reduction
por: Villaverde, Alejandro F., et al.
Publicado: (2014) -
Influence of Statistical Estimators of Mutual Information and Data Heterogeneity on the Inference of Gene Regulatory Networks
por: de Matos Simoes, Ricardo, et al.
Publicado: (2011)