Cargando…
Using a State-Space Model and Location Analysis to Infer Time-Delayed Regulatory Networks
Computational gene regulation models provide a means for scientists to draw biological inferences from time-course gene expression data. Based on the state-space approach, we developed a new modeling tool for inferring gene regulatory networks, called time-delayed Gene Regulatory Networks (tdGRNs)....
Autores principales: | Koh, Chushin, Wu, Fang-Xiang, Selvaraj, Gopalan, Kusalik, Anthony J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171427/ https://www.ncbi.nlm.nih.gov/pubmed/19841683 http://dx.doi.org/10.1155/2009/484601 |
Ejemplares similares
-
Time Delayed Causal Gene Regulatory Network Inference with Hidden Common Causes
por: Lo, Leung-Yau, et al.
Publicado: (2015) -
State Observer Design for Delayed Genetic Regulatory Networks
por: Tian, Li-Ping, et al.
Publicado: (2014) -
Inference of time-delayed gene regulatory networks based on dynamic Bayesian network hybrid learning method
por: Yu, Bin, et al.
Publicado: (2017) -
Inference of Large-scale Time-delayed Gene Regulatory Network with Parallel MapReduce Cloud Platform
por: Yang, Bin, et al.
Publicado: (2018) -
Gene regulatory network inference and validation using relative change ratio analysis and time-delayed dynamic Bayesian network
por: Li, Peng, et al.
Publicado: (2014)