Cargando…
Impact of Missing Value Imputation on Classification for DNA Microarray Gene Expression Data—A Model-Based Study
Many missing-value (MV) imputation methods have been developed for microarray data, but only a few studies have investigated the relationship between MV imputation and classification accuracy. Furthermore, these studies are problematic in fundamental steps such as MV generation and classifier error...
Autores principales: | Sun, Youting, Braga-Neto, Ulisses, Dougherty, EdwardR |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171429/ https://www.ncbi.nlm.nih.gov/pubmed/20224634 http://dx.doi.org/10.1155/2009/504069 |
Ejemplares similares
-
Robust imputation method for missing values in microarray data
por: Yoon, Dankyu, et al.
Publicado: (2007) -
Missing value imputation improves clustering and interpretation of gene expression microarray data
por: Tuikkala, Johannes, et al.
Publicado: (2008) -
An efficient ensemble method for missing value imputation in microarray gene expression data
por: Zhu, Xinshan, et al.
Publicado: (2021) -
A systematic model of the LC-MS proteomics pipeline
por: Sun, Youting, et al.
Publicado: (2012) -
Missing value imputation for microarray gene expression data using histone acetylation information
por: Xiang, Qian, et al.
Publicado: (2008)