Cargando…
Reconstructing Generalized Logical Networks of Transcriptional Regulation in Mouse Brain from Temporal Gene Expression Data
Gene expression time course data can be used not only to detect differentially expressed genes but also to find temporal associations among genes. The problem of reconstructing generalized logical networks to account for temporal dependencies among genes and environmental stimuli from transcriptomic...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171431/ https://www.ncbi.nlm.nih.gov/pubmed/19300527 http://dx.doi.org/10.1155/2009/545176 |
_version_ | 1782211761183653888 |
---|---|
author | Song, Mingzhou(Joe) Lewis, Chris K Lance, Eric R Chesler, Elissa J Yordanova, Roumyana Kirova Langston, Michael A Lodowski, Kerrie H Bergeson, Susan E |
author_facet | Song, Mingzhou(Joe) Lewis, Chris K Lance, Eric R Chesler, Elissa J Yordanova, Roumyana Kirova Langston, Michael A Lodowski, Kerrie H Bergeson, Susan E |
author_sort | Song, Mingzhou(Joe) |
collection | PubMed |
description | Gene expression time course data can be used not only to detect differentially expressed genes but also to find temporal associations among genes. The problem of reconstructing generalized logical networks to account for temporal dependencies among genes and environmental stimuli from transcriptomic data is addressed. A network reconstruction algorithm was developed that uses statistical significance as a criterion for network selection to avoid false-positive interactions arising from pure chance. The multinomial hypothesis testing-based network reconstruction allows for explicit specification of the false-positive rate, unique from all extant network inference algorithms. The method is superior to dynamic Bayesian network modeling in a simulation study. Temporal gene expression data from the brains of alcohol-treated mice in an analysis of the molecular response to alcohol are used for modeling. Genes from major neuronal pathways are identified as putative components of the alcohol response mechanism. Nine of these genes have associations with alcohol reported in literature. Several other potentially relevant genes, compatible with independent results from literature mining, may play a role in the response to alcohol. Additional, previously unknown gene interactions were discovered that, subject to biological verification, may offer new clues in the search for the elusive molecular mechanisms of alcoholism. |
format | Online Article Text |
id | pubmed-3171431 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Springer |
record_format | MEDLINE/PubMed |
spelling | pubmed-31714312011-09-13 Reconstructing Generalized Logical Networks of Transcriptional Regulation in Mouse Brain from Temporal Gene Expression Data Song, Mingzhou(Joe) Lewis, Chris K Lance, Eric R Chesler, Elissa J Yordanova, Roumyana Kirova Langston, Michael A Lodowski, Kerrie H Bergeson, Susan E EURASIP J Bioinform Syst Biol Research Article Gene expression time course data can be used not only to detect differentially expressed genes but also to find temporal associations among genes. The problem of reconstructing generalized logical networks to account for temporal dependencies among genes and environmental stimuli from transcriptomic data is addressed. A network reconstruction algorithm was developed that uses statistical significance as a criterion for network selection to avoid false-positive interactions arising from pure chance. The multinomial hypothesis testing-based network reconstruction allows for explicit specification of the false-positive rate, unique from all extant network inference algorithms. The method is superior to dynamic Bayesian network modeling in a simulation study. Temporal gene expression data from the brains of alcohol-treated mice in an analysis of the molecular response to alcohol are used for modeling. Genes from major neuronal pathways are identified as putative components of the alcohol response mechanism. Nine of these genes have associations with alcohol reported in literature. Several other potentially relevant genes, compatible with independent results from literature mining, may play a role in the response to alcohol. Additional, previously unknown gene interactions were discovered that, subject to biological verification, may offer new clues in the search for the elusive molecular mechanisms of alcoholism. Springer 2009-01-27 /pmc/articles/PMC3171431/ /pubmed/19300527 http://dx.doi.org/10.1155/2009/545176 Text en Copyright © 2009 Mingzhou (Joe) Song et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Song, Mingzhou(Joe) Lewis, Chris K Lance, Eric R Chesler, Elissa J Yordanova, Roumyana Kirova Langston, Michael A Lodowski, Kerrie H Bergeson, Susan E Reconstructing Generalized Logical Networks of Transcriptional Regulation in Mouse Brain from Temporal Gene Expression Data |
title | Reconstructing Generalized Logical Networks of Transcriptional Regulation in Mouse Brain from Temporal Gene Expression Data |
title_full | Reconstructing Generalized Logical Networks of Transcriptional Regulation in Mouse Brain from Temporal Gene Expression Data |
title_fullStr | Reconstructing Generalized Logical Networks of Transcriptional Regulation in Mouse Brain from Temporal Gene Expression Data |
title_full_unstemmed | Reconstructing Generalized Logical Networks of Transcriptional Regulation in Mouse Brain from Temporal Gene Expression Data |
title_short | Reconstructing Generalized Logical Networks of Transcriptional Regulation in Mouse Brain from Temporal Gene Expression Data |
title_sort | reconstructing generalized logical networks of transcriptional regulation in mouse brain from temporal gene expression data |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171431/ https://www.ncbi.nlm.nih.gov/pubmed/19300527 http://dx.doi.org/10.1155/2009/545176 |
work_keys_str_mv | AT songmingzhoujoe reconstructinggeneralizedlogicalnetworksoftranscriptionalregulationinmousebrainfromtemporalgeneexpressiondata AT lewischrisk reconstructinggeneralizedlogicalnetworksoftranscriptionalregulationinmousebrainfromtemporalgeneexpressiondata AT lanceericr reconstructinggeneralizedlogicalnetworksoftranscriptionalregulationinmousebrainfromtemporalgeneexpressiondata AT cheslerelissaj reconstructinggeneralizedlogicalnetworksoftranscriptionalregulationinmousebrainfromtemporalgeneexpressiondata AT yordanovaroumyanakirova reconstructinggeneralizedlogicalnetworksoftranscriptionalregulationinmousebrainfromtemporalgeneexpressiondata AT langstonmichaela reconstructinggeneralizedlogicalnetworksoftranscriptionalregulationinmousebrainfromtemporalgeneexpressiondata AT lodowskikerrieh reconstructinggeneralizedlogicalnetworksoftranscriptionalregulationinmousebrainfromtemporalgeneexpressiondata AT bergesonsusane reconstructinggeneralizedlogicalnetworksoftranscriptionalregulationinmousebrainfromtemporalgeneexpressiondata |