Cargando…

Reverse Engineering of Gene Regulatory Networks: A Comparative Study

Reverse engineering of gene regulatory networks has been an intensively studied topic in bioinformatics since it constitutes an intermediate step from explorative to causative gene expression analysis. Many methods have been proposed through recent years leading to a wide range of mathematical appro...

Descripción completa

Detalles Bibliográficos
Autores principales: Hache, Hendrik, Lehrach, Hans, Herwig, Ralf
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171435/
https://www.ncbi.nlm.nih.gov/pubmed/19551137
http://dx.doi.org/10.1155/2009/617281
Descripción
Sumario:Reverse engineering of gene regulatory networks has been an intensively studied topic in bioinformatics since it constitutes an intermediate step from explorative to causative gene expression analysis. Many methods have been proposed through recent years leading to a wide range of mathematical approaches. In practice, different mathematical approaches will generate different resulting network structures, thus, it is very important for users to assess the performance of these algorithms. We have conducted a comparative study with six different reverse engineering methods, including relevance networks, neural networks, and Bayesian networks. Our approach consists of the generation of defined benchmark data, the analysis of these data with the different methods, and the assessment of algorithmic performances by statistical analyses. Performance was judged by network size and noise levels. The results of the comparative study highlight the neural network approach as best performing method among those under study.