Cargando…

Hydrogen Sulfide and Neurogenic Inflammation in Polymicrobial Sepsis: Involvement of Substance P and ERK-NF-κB Signaling

Hydrogen sulfide (H(2)S) has been shown to induce transient receptor potential vanilloid 1 (TRPV1)-mediated neurogenic inflammation in polymicrobial sepsis. However, endogenous neural factors that modulate this event and the molecular mechanism by which this occurs remain unclear. Therefore, this st...

Descripción completa

Detalles Bibliográficos
Autores principales: Ang, Seah-Fang, Moochhala, Shabbir M., MacAry, Paul A., Bhatia, Madhav
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171449/
https://www.ncbi.nlm.nih.gov/pubmed/21931742
http://dx.doi.org/10.1371/journal.pone.0024535
Descripción
Sumario:Hydrogen sulfide (H(2)S) has been shown to induce transient receptor potential vanilloid 1 (TRPV1)-mediated neurogenic inflammation in polymicrobial sepsis. However, endogenous neural factors that modulate this event and the molecular mechanism by which this occurs remain unclear. Therefore, this study tested the hypothesis that whether substance P (SP) is one important neural element that implicates in H(2)S-induced neurogenic inflammation in sepsis in a TRPV1-dependent manner, and if so, whether H(2)S regulates this response through activation of the extracellular signal-regulated kinase-nuclear factor-κB (ERK-NF-κB) pathway. Male Swiss mice were subjected to cecal ligation and puncture (CLP)-induced sepsis and treated with TRPV1 antagonist capsazepine 30 minutes before CLP. DL-propargylglycine (PAG), an inhibitor of H(2)S formation, was administrated 1 hour before or 1 hour after sepsis, whereas sodium hydrosulfide (NaHS), an H(2)S donor, was given at the same time as CLP. Capsazepine significantly attenuated H(2)S-induced SP production, inflammatory cytokines, chemokines, and adhesion molecules levels, and protected against lung and liver dysfunction in sepsis. In the absence of H(2)S, capsazepine caused no significant changes to the PAG-mediated attenuation of lung and plasma SP levels, sepsis-associated systemic inflammatory response and multiple organ dysfunction. In addition, capsazepine greatly inhibited phosphorylation of ERK(1/2) and inhibitory κBα, concurrent with suppression of NF-κB activation even in the presence of NaHS. Furthermore, capsazepine had no effect on PAG-mediated abrogation of these levels in sepsis. Taken together, the present findings show that H(2)S regulates TRPV1-mediated neurogenic inflammation in polymicrobial sepsis through enhancement of SP production and activation of the ERK-NF-κB pathway.