Cargando…

Effects of the interaction of diabetes and iron supplementation on hepatic and pancreatic tissues, oxidative stress markers, and liver peroxisome proliferator-activated receptor-α expression

This study evaluated the effects of the interaction of diabetes and a carbonyl iron supplemented on hepatic and pancreatic tissues, oxidative stress markers and liver peroxisome proliferator-activated receptor-α expressions. Hamsters were divided: Control which received a standard AIN 93 diet; Contr...

Descripción completa

Detalles Bibliográficos
Autores principales: Silva, Maísa, Bonomo, Larissa de Freitas, Oliveira, Riva de Paula, Geraldo de Lima, Wanderson, Silva, Marcelo Eustáquio, Pedrosa, Maria Lucia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: the Society for Free Radical Research Japan 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171682/
https://www.ncbi.nlm.nih.gov/pubmed/21980225
http://dx.doi.org/10.3164/jcbn.10-135
Descripción
Sumario:This study evaluated the effects of the interaction of diabetes and a carbonyl iron supplemented on hepatic and pancreatic tissues, oxidative stress markers and liver peroxisome proliferator-activated receptor-α expressions. Hamsters were divided: Control which received a standard AIN 93 diet; Control Iron, composed of control animals that received a diet with 0.83% carbonyl iron; Diabetic, composed of animals that received a injection of streptozotocin (50 mg/kg, intraperitoneal) on day 35; and Diabetic Iron composed of streptozotocin treated animals that received a diet supplemented with carbonyl iron. Diabetes increased the glucose level and reduced triglycerides. Diabetic Iron group showed higher levels of glucose and serum triglycerides as compared to the Diabetic group. Diabetes decreased mRNA levels of peroxisome proliferator-activated receptor-α. Iron attenuated the diabetes induced down regulation of peroxisome proliferator-activated receptor-α mRNA. Moreover, diabetes increased carbonyl protein and decreased glutathione levels and catalase activity, while iron attenuated the increase in levels of carbonyl protein and attenuated the decrease in those of glutathione level and catalase activity. Histological analysis shows that supplementation iron caused an increase in the size of the islets in Control Iron. The results show that iron does not aggravated liver oxidant/antioxidant status and peroxisome proliferator-activated receptor-α expression in diabetic hamsters.