Cargando…
Formation of 7-carboxyheptyl radical induced by singlet oxygen in the reaction mixture of oleic acid, riboflavin and ferrous ion under the UVA irradiation
Identification of the radicals was performed for the standard reaction mixtures, which contained 4.3 mM oleic acid, 25 µM riboflavin, 1 mM FeSO(4)(NH(4))(2)SO(4), 10 mM cholic acid, 40 mM phosphate buffer (pH 7.4) and 0.1 M α-(4-pyridyl-1-oxide)-N-tert-butylnitrone under the UVA irradiation (365 nm)...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
the Society for Free Radical Research Japan
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171688/ https://www.ncbi.nlm.nih.gov/pubmed/21980232 http://dx.doi.org/10.3164/jcbn.10-144 |
Sumario: | Identification of the radicals was performed for the standard reaction mixtures, which contained 4.3 mM oleic acid, 25 µM riboflavin, 1 mM FeSO(4)(NH(4))(2)SO(4), 10 mM cholic acid, 40 mM phosphate buffer (pH 7.4) and 0.1 M α-(4-pyridyl-1-oxide)-N-tert-butylnitrone under the UVA irradiation (365 nm), using an electron spin resonance, an high performance liquid chromatography-electron spin resonance and an high performance liquid chromatography-electron spin resonance-mass spectrometry. The electron spin resonance and high performance liquid chromatography-electron spin resonance measurements of the standard reaction mixtures showed prominent signals (α(N) = 1.58 mT and α(H)β = 0.26 mT) and peaks 1 and 3 (retention times, 37.0 min and 49.0 min). Since the peak 3 was not observed for the standard reaction mixture without oleic acid, the radical of the peak 3 seems to be derived from oleic acid. Singlet oxygens seem to participate in the formation of the oleic acid-derived radicals because the peak height of the peak 3 observed in the standard reaction mixture of D(2)O increased to 308 ± 72% of the control. The high performance liquid chromatography-electron spin resonance-mass spectrometry analysis showed that 7-carboxyheptyl radical forms in the standard reaction mixture. |
---|