Cargando…

Vacuolar H(+)-ATPase subunits Voa1 and Voa2 cooperatively regulate secretory vesicle acidification, transmitter uptake, and storage

The Vo sector of the vacuolar H(+)-ATPase is a multisubunit complex that forms a proteolipid pore. Among the four isoforms (a1–a4) of subunit Voa, the isoform(s) critical for secretory vesicle acidification have yet to be identified. An independent function of Voa1 in exocytosis has been suggested....

Descripción completa

Detalles Bibliográficos
Autores principales: Saw, Ner Mu Nar, Kang, Soo-Young Ann, Parsaud, Leon, Han, Gayoung Anna, Jiang, Tiandan, Grzegorczyk, Krzysztof, Surkont, Michael, Sun-Wada, Ge-Hong, Wada, Yoh, Li, Lijun, Sugita, Shuzo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The American Society for Cell Biology 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3172264/
https://www.ncbi.nlm.nih.gov/pubmed/21795392
http://dx.doi.org/10.1091/mbc.E11-02-0155
_version_ 1782211850127015936
author Saw, Ner Mu Nar
Kang, Soo-Young Ann
Parsaud, Leon
Han, Gayoung Anna
Jiang, Tiandan
Grzegorczyk, Krzysztof
Surkont, Michael
Sun-Wada, Ge-Hong
Wada, Yoh
Li, Lijun
Sugita, Shuzo
author_facet Saw, Ner Mu Nar
Kang, Soo-Young Ann
Parsaud, Leon
Han, Gayoung Anna
Jiang, Tiandan
Grzegorczyk, Krzysztof
Surkont, Michael
Sun-Wada, Ge-Hong
Wada, Yoh
Li, Lijun
Sugita, Shuzo
author_sort Saw, Ner Mu Nar
collection PubMed
description The Vo sector of the vacuolar H(+)-ATPase is a multisubunit complex that forms a proteolipid pore. Among the four isoforms (a1–a4) of subunit Voa, the isoform(s) critical for secretory vesicle acidification have yet to be identified. An independent function of Voa1 in exocytosis has been suggested. Here we investigate the function of Voa isoforms in secretory vesicle acidification and exocytosis by using neurosecretory PC12 cells. Fluorescence-tagged and endogenous Voa1 are primarily localized on secretory vesicles, whereas fluorescence-tagged Voa2 and Voa3 are enriched on the Golgi and early endosomes, respectively. To elucidate the functional roles of Voa1 and Voa2, we engineered PC12 cells in which Voa1, Voa2, or both are stably down-regulated. Our results reveal significant reductions in the acidification and transmitter uptake/storage of dense-core vesicles by knockdown of Voa1 and more dramatically of Voa1/Voa2 but not of Voa2. Overexpressing knockdown-resistant Voa1 suppresses the acidification defect caused by the Voa1/Voa2 knockdown. Unexpectedly, Ca(2+)-dependent peptide secretion is largely unaffected in Voa1 or Voa1/Voa2 knockdown cells. Our data demonstrate that Voa1 and Voa2 cooperatively regulate the acidification and transmitter uptake/storage of dense-core vesicles, whereas they might not be as critical for exocytosis as recently proposed.
format Online
Article
Text
id pubmed-3172264
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher The American Society for Cell Biology
record_format MEDLINE/PubMed
spelling pubmed-31722642011-11-30 Vacuolar H(+)-ATPase subunits Voa1 and Voa2 cooperatively regulate secretory vesicle acidification, transmitter uptake, and storage Saw, Ner Mu Nar Kang, Soo-Young Ann Parsaud, Leon Han, Gayoung Anna Jiang, Tiandan Grzegorczyk, Krzysztof Surkont, Michael Sun-Wada, Ge-Hong Wada, Yoh Li, Lijun Sugita, Shuzo Mol Biol Cell Articles The Vo sector of the vacuolar H(+)-ATPase is a multisubunit complex that forms a proteolipid pore. Among the four isoforms (a1–a4) of subunit Voa, the isoform(s) critical for secretory vesicle acidification have yet to be identified. An independent function of Voa1 in exocytosis has been suggested. Here we investigate the function of Voa isoforms in secretory vesicle acidification and exocytosis by using neurosecretory PC12 cells. Fluorescence-tagged and endogenous Voa1 are primarily localized on secretory vesicles, whereas fluorescence-tagged Voa2 and Voa3 are enriched on the Golgi and early endosomes, respectively. To elucidate the functional roles of Voa1 and Voa2, we engineered PC12 cells in which Voa1, Voa2, or both are stably down-regulated. Our results reveal significant reductions in the acidification and transmitter uptake/storage of dense-core vesicles by knockdown of Voa1 and more dramatically of Voa1/Voa2 but not of Voa2. Overexpressing knockdown-resistant Voa1 suppresses the acidification defect caused by the Voa1/Voa2 knockdown. Unexpectedly, Ca(2+)-dependent peptide secretion is largely unaffected in Voa1 or Voa1/Voa2 knockdown cells. Our data demonstrate that Voa1 and Voa2 cooperatively regulate the acidification and transmitter uptake/storage of dense-core vesicles, whereas they might not be as critical for exocytosis as recently proposed. The American Society for Cell Biology 2011-09-15 /pmc/articles/PMC3172264/ /pubmed/21795392 http://dx.doi.org/10.1091/mbc.E11-02-0155 Text en © 2011 Saw et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0). “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society of Cell Biology.
spellingShingle Articles
Saw, Ner Mu Nar
Kang, Soo-Young Ann
Parsaud, Leon
Han, Gayoung Anna
Jiang, Tiandan
Grzegorczyk, Krzysztof
Surkont, Michael
Sun-Wada, Ge-Hong
Wada, Yoh
Li, Lijun
Sugita, Shuzo
Vacuolar H(+)-ATPase subunits Voa1 and Voa2 cooperatively regulate secretory vesicle acidification, transmitter uptake, and storage
title Vacuolar H(+)-ATPase subunits Voa1 and Voa2 cooperatively regulate secretory vesicle acidification, transmitter uptake, and storage
title_full Vacuolar H(+)-ATPase subunits Voa1 and Voa2 cooperatively regulate secretory vesicle acidification, transmitter uptake, and storage
title_fullStr Vacuolar H(+)-ATPase subunits Voa1 and Voa2 cooperatively regulate secretory vesicle acidification, transmitter uptake, and storage
title_full_unstemmed Vacuolar H(+)-ATPase subunits Voa1 and Voa2 cooperatively regulate secretory vesicle acidification, transmitter uptake, and storage
title_short Vacuolar H(+)-ATPase subunits Voa1 and Voa2 cooperatively regulate secretory vesicle acidification, transmitter uptake, and storage
title_sort vacuolar h(+)-atpase subunits voa1 and voa2 cooperatively regulate secretory vesicle acidification, transmitter uptake, and storage
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3172264/
https://www.ncbi.nlm.nih.gov/pubmed/21795392
http://dx.doi.org/10.1091/mbc.E11-02-0155
work_keys_str_mv AT sawnermunar vacuolarhatpasesubunitsvoa1andvoa2cooperativelyregulatesecretoryvesicleacidificationtransmitteruptakeandstorage
AT kangsooyoungann vacuolarhatpasesubunitsvoa1andvoa2cooperativelyregulatesecretoryvesicleacidificationtransmitteruptakeandstorage
AT parsaudleon vacuolarhatpasesubunitsvoa1andvoa2cooperativelyregulatesecretoryvesicleacidificationtransmitteruptakeandstorage
AT hangayounganna vacuolarhatpasesubunitsvoa1andvoa2cooperativelyregulatesecretoryvesicleacidificationtransmitteruptakeandstorage
AT jiangtiandan vacuolarhatpasesubunitsvoa1andvoa2cooperativelyregulatesecretoryvesicleacidificationtransmitteruptakeandstorage
AT grzegorczykkrzysztof vacuolarhatpasesubunitsvoa1andvoa2cooperativelyregulatesecretoryvesicleacidificationtransmitteruptakeandstorage
AT surkontmichael vacuolarhatpasesubunitsvoa1andvoa2cooperativelyregulatesecretoryvesicleacidificationtransmitteruptakeandstorage
AT sunwadagehong vacuolarhatpasesubunitsvoa1andvoa2cooperativelyregulatesecretoryvesicleacidificationtransmitteruptakeandstorage
AT wadayoh vacuolarhatpasesubunitsvoa1andvoa2cooperativelyregulatesecretoryvesicleacidificationtransmitteruptakeandstorage
AT lilijun vacuolarhatpasesubunitsvoa1andvoa2cooperativelyregulatesecretoryvesicleacidificationtransmitteruptakeandstorage
AT sugitashuzo vacuolarhatpasesubunitsvoa1andvoa2cooperativelyregulatesecretoryvesicleacidificationtransmitteruptakeandstorage