Cargando…
An Efficient Simulation Environment for Modeling Large-Scale Cortical Processing
We have developed a spiking neural network simulator, which is both easy to use and computationally efficient, for the generation of large-scale computational neuroscience models. The simulator implements current or conductance based Izhikevich neuron networks, having spike-timing dependent plastici...
Autores principales: | Richert, Micah, Nageswaran, Jayram Moorkanikara, Dutt, Nikil, Krichmar, Jeffrey L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Research Foundation
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3172707/ https://www.ncbi.nlm.nih.gov/pubmed/22007166 http://dx.doi.org/10.3389/fninf.2011.00019 |
Ejemplares similares
-
An efficient automated parameter tuning framework for spiking neural networks
por: Carlson, Kristofor D., et al.
Publicado: (2014) -
A large-scale neural network model of the influence of neuromodulatory levels on working memory and behavior
por: Avery, Michael C., et al.
Publicado: (2013) -
A spiking model of superior colliculus for bottom-up saliency
por: Richert, Micah, et al.
Publicado: (2013) -
Temporally evolving surround suppression helps decoding in a spiking model of motion processing
por: Meier, Philip M, et al.
Publicado: (2013) -
Emergence of bottom-up saliency in a spiking model of V1
por: Szatmáry, Botond, et al.
Publicado: (2013)