Cargando…

Macrophage Autophagy and Oxidative Stress: An Ultrastructural and Immunoelectron Microscopical Study

The word autophagy broadly refers to the cellular catabolic processes that lead to the removal of damaged cytosolic proteins or cell organelles through lysosomes. Although autophagy is often observed during programmed cell death, it may also serve as a cell survival mechanism. Accumulation of reacti...

Descripción completa

Detalles Bibliográficos
Autores principales: Perrotta, Ida, Carito, Valentina, Russo, Emilio, Tripepi, Sandro, Aquila, Saveria, Donato, Giuseppe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3172980/
https://www.ncbi.nlm.nih.gov/pubmed/21922037
http://dx.doi.org/10.1155/2011/282739
Descripción
Sumario:The word autophagy broadly refers to the cellular catabolic processes that lead to the removal of damaged cytosolic proteins or cell organelles through lysosomes. Although autophagy is often observed during programmed cell death, it may also serve as a cell survival mechanism. Accumulation of reactive oxygen species within tissues and cells induces various defense mechanisms or programmed cell death. It has been shown that, besides inducing apoptosis, oxidative stress can also induce autophagy. To date, however, the regulation of autophagy in response to oxidative stress remains largely elusive and poorly understood. Therefore, the present study was designed to examine the ratio between oxidative stress and autophagy in macrophages after oxidant exposure (AAPH) and to investigate the ultrastructural localization of beclin-1, a protein essential for autophagy, under basal and stressful conditions. Our data provide evidence that oxidative stress induces autophagy in macrophages. We demonstrate, for the first time by immunoelectron microscopy, the subcellular localization of beclin-1 in autophagic cells.