Cargando…

Computational analysis of Concanavalin A binding glycoproteins of human seminal plasma

Glycoproteins have immense clinical importance and comparative glycoproteomics has become a powerful tool for biomarker discovery and disease diagnosis. Seminal plasma glycoproteins participate in fertility related processes including sperm-egg recognition, modulation of capacitation and acrosome re...

Descripción completa

Detalles Bibliográficos
Autores principales: Tomar, Anil Kumar, Sooch, Balwinder Singh, Yadav, Savita
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Biomedical Informatics 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3174039/
https://www.ncbi.nlm.nih.gov/pubmed/21938208
Descripción
Sumario:Glycoproteins have immense clinical importance and comparative glycoproteomics has become a powerful tool for biomarker discovery and disease diagnosis. Seminal plasma glycoproteins participate in fertility related processes including sperm-egg recognition, modulation of capacitation and acrosome reaction inhibition. Affinity chromatography using broad specificity lectin such as Con A is widely applied for glycoproteins enrichment. More notably, Con A-interacting fraction of human seminal plasma has decapacitating activity which makes this fraction critically important. In our previous study, we isolated Con A-interacting glycoproteins from human seminal plasma and subsequently identified them by mass spectrometry. Here, we report the computational analysis of these proteins using bioinformatics tools. The analysis includes: prediction of glycosylation sites using sequence information (NetNGlyc 1.0), functional annotations to cluster these proteins into various functional groups (InterProScan and Blast2GO) and identification of protein interaction networks (STRING database). The results indicate that these proteins are involved in various biological processes including transport, morphogenesis, metabolic processes, cell differentiation and homeostasis. The clusters illustrate two major molecular functions - hydrolase activity (6) and protein (4)/carbohydrate (1)/lipid binding (1). The large interactomes of proteins point towards their versatile roles in wide range of biological processes.