Cargando…
High efficient isolation and systematic identification of human adipose-derived mesenchymal stem cells
BACKGROUND: Developing efficient methods to isolate and identify human adipose-derived mesenchymal stem cells (hADSCs) remains to be one of the major challenges in tissue engineering. METHODS: We demonstrate here a method by isolating hADSCs from abdominal subcutaneous adipose tissue harvested durin...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3175156/ https://www.ncbi.nlm.nih.gov/pubmed/21854621 http://dx.doi.org/10.1186/1423-0127-18-59 |
_version_ | 1782212119724294144 |
---|---|
author | Yang, Xu-Fang He, Xu He, Jian Zhang, Li-Hong Su, Xue-Jin Dong, Zhi-Yong Xu, Yun-Jian Li, Yan Li, Yu-Lin |
author_facet | Yang, Xu-Fang He, Xu He, Jian Zhang, Li-Hong Su, Xue-Jin Dong, Zhi-Yong Xu, Yun-Jian Li, Yan Li, Yu-Lin |
author_sort | Yang, Xu-Fang |
collection | PubMed |
description | BACKGROUND: Developing efficient methods to isolate and identify human adipose-derived mesenchymal stem cells (hADSCs) remains to be one of the major challenges in tissue engineering. METHODS: We demonstrate here a method by isolating hADSCs from abdominal subcutaneous adipose tissue harvested during caesarian section. The hADSCs were isolated from human adipose tissue by collagenase digestion and adherence to flasks. RESULTS: The yield reached around 1 × 10(6 )hADSCs per gram adipose tissue. The following comprehensive identification and characterization illustrated pronounced features of mesenchymal stem cells (MSCs). The fibroblast-like hADSCs exhibited typical ultrastructure details for vigorous cell activities. Karyotype mapping showed normal human chromosome. With unique immunophenotypes they were positive for CD29, CD44, CD73, CD105 and CD166, but negative for CD31, CD34, CD45 and HLA-DR. The growth curve and cell cycle analysis revealed high capability for self-renewal and proliferation. Moreover, these cells could be functionally induced into adipocytes, osteoblasts, and endothelial cells in the presence of appropriate conditioned media. CONCLUSION: The data presented here suggest that we have developed high efficient isolation and cultivation methods with a systematic strategy for identification and characterization of hADSCs. These techniques will be able to provide safe and stable seeding cells for research and clinical application. |
format | Online Article Text |
id | pubmed-3175156 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-31751562011-09-18 High efficient isolation and systematic identification of human adipose-derived mesenchymal stem cells Yang, Xu-Fang He, Xu He, Jian Zhang, Li-Hong Su, Xue-Jin Dong, Zhi-Yong Xu, Yun-Jian Li, Yan Li, Yu-Lin J Biomed Sci Research BACKGROUND: Developing efficient methods to isolate and identify human adipose-derived mesenchymal stem cells (hADSCs) remains to be one of the major challenges in tissue engineering. METHODS: We demonstrate here a method by isolating hADSCs from abdominal subcutaneous adipose tissue harvested during caesarian section. The hADSCs were isolated from human adipose tissue by collagenase digestion and adherence to flasks. RESULTS: The yield reached around 1 × 10(6 )hADSCs per gram adipose tissue. The following comprehensive identification and characterization illustrated pronounced features of mesenchymal stem cells (MSCs). The fibroblast-like hADSCs exhibited typical ultrastructure details for vigorous cell activities. Karyotype mapping showed normal human chromosome. With unique immunophenotypes they were positive for CD29, CD44, CD73, CD105 and CD166, but negative for CD31, CD34, CD45 and HLA-DR. The growth curve and cell cycle analysis revealed high capability for self-renewal and proliferation. Moreover, these cells could be functionally induced into adipocytes, osteoblasts, and endothelial cells in the presence of appropriate conditioned media. CONCLUSION: The data presented here suggest that we have developed high efficient isolation and cultivation methods with a systematic strategy for identification and characterization of hADSCs. These techniques will be able to provide safe and stable seeding cells for research and clinical application. BioMed Central 2011-08-19 /pmc/articles/PMC3175156/ /pubmed/21854621 http://dx.doi.org/10.1186/1423-0127-18-59 Text en Copyright ©2011 Yang et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Yang, Xu-Fang He, Xu He, Jian Zhang, Li-Hong Su, Xue-Jin Dong, Zhi-Yong Xu, Yun-Jian Li, Yan Li, Yu-Lin High efficient isolation and systematic identification of human adipose-derived mesenchymal stem cells |
title | High efficient isolation and systematic identification of human adipose-derived mesenchymal stem cells |
title_full | High efficient isolation and systematic identification of human adipose-derived mesenchymal stem cells |
title_fullStr | High efficient isolation and systematic identification of human adipose-derived mesenchymal stem cells |
title_full_unstemmed | High efficient isolation and systematic identification of human adipose-derived mesenchymal stem cells |
title_short | High efficient isolation and systematic identification of human adipose-derived mesenchymal stem cells |
title_sort | high efficient isolation and systematic identification of human adipose-derived mesenchymal stem cells |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3175156/ https://www.ncbi.nlm.nih.gov/pubmed/21854621 http://dx.doi.org/10.1186/1423-0127-18-59 |
work_keys_str_mv | AT yangxufang highefficientisolationandsystematicidentificationofhumanadiposederivedmesenchymalstemcells AT hexu highefficientisolationandsystematicidentificationofhumanadiposederivedmesenchymalstemcells AT hejian highefficientisolationandsystematicidentificationofhumanadiposederivedmesenchymalstemcells AT zhanglihong highefficientisolationandsystematicidentificationofhumanadiposederivedmesenchymalstemcells AT suxuejin highefficientisolationandsystematicidentificationofhumanadiposederivedmesenchymalstemcells AT dongzhiyong highefficientisolationandsystematicidentificationofhumanadiposederivedmesenchymalstemcells AT xuyunjian highefficientisolationandsystematicidentificationofhumanadiposederivedmesenchymalstemcells AT liyan highefficientisolationandsystematicidentificationofhumanadiposederivedmesenchymalstemcells AT liyulin highefficientisolationandsystematicidentificationofhumanadiposederivedmesenchymalstemcells |