Cargando…
Automatic Classification of Artifactual ICA-Components for Artifact Removal in EEG Signals
BACKGROUND: Artifacts contained in EEG recordings hamper both, the visual interpretation by experts as well as the algorithmic processing and analysis (e.g. for Brain-Computer Interfaces (BCI) or for Mental State Monitoring). While hand-optimized selection of source components derived from Independe...
Autores principales: | Winkler, Irene, Haufe, Stefan, Tangermann, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3175453/ https://www.ncbi.nlm.nih.gov/pubmed/21810266 http://dx.doi.org/10.1186/1744-9081-7-30 |
Ejemplares similares
-
Automatic classification of ICA components from infant EEG using MARA
por: Marriott Haresign, I., et al.
Publicado: (2021) -
A new ICA-based fingerprint method for the automatic removal of physiological artifacts from EEG recordings
por: Tamburro, Gabriella, et al.
Publicado: (2018) -
Hybrid ICA—Regression: Automatic Identification and Removal of Ocular Artifacts from Electroencephalographic Signals
por: Mannan, Malik M. Naeem, et al.
Publicado: (2016) -
Automatic Artifact Removal in EEG of Normal and Demented Individuals Using ICA–WT during Working Memory Tasks
por: Al-Qazzaz, Noor Kamal, et al.
Publicado: (2017) -
Clustering-Constrained ICA for Ballistocardiogram Artifacts Removal in Simultaneous EEG-fMRI
por: Wang, Kai, et al.
Publicado: (2018)