Cargando…
Gene- or region-based association study via kernel principal component analysis
BACKGROUND: In genetic association study, especially in GWAS, gene- or region-based methods have been more popular to detect the association between multiple SNPs and diseases (or traits). Kernel principal component analysis combined with logistic regression test (KPCA-LRT) has been successfully use...
Autores principales: | Gao, Qingsong, He, Yungang, Yuan, Zhongshang, Zhao, Jinghua, Zhang, Bingbing, Xue, Fuzhong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3176196/ https://www.ncbi.nlm.nih.gov/pubmed/21871061 http://dx.doi.org/10.1186/1471-2156-12-75 |
Ejemplares similares
-
Detection for gene-gene co-association via kernel canonical correlation analysis
por: Yuan, Zhongshang, et al.
Publicado: (2012) -
Gene Expression Data Classification With Kernel
Principal Component Analysis
por: Liu, Zhenqiu, et al.
Publicado: (2005) -
A powerful latent variable method for detecting and characterizing gene-based gene-gene interaction on multiple quantitative traits
por: Li, Fangyu, et al.
Publicado: (2013) -
Detecting gene–gene interactions from GWAS using diffusion kernel principal components
por: Walakira, Andrew, et al.
Publicado: (2022) -
Kernel Principal Component Analysis of Coil Compression in Parallel Imaging
por: Chang, Yuchou, et al.
Publicado: (2018)