Cargando…
Developing a predictive tool for psychological well-being among Chinese adolescents in the presence of missing data
BACKGROUND: Multi-dimensional behavioral rating scales like the CBCL and YSR are available for diagnosing psychosocial maladjustment in adolescents, but these are unsuitable for large-scale usage since they are time-consuming and their many sensitive questions often lead to missing data. This resear...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3176250/ https://www.ncbi.nlm.nih.gov/pubmed/21854626 http://dx.doi.org/10.1186/1471-2288-11-119 |
_version_ | 1782212203491885056 |
---|---|
author | Lynn, Henry S Tsang, Bill Y |
author_facet | Lynn, Henry S Tsang, Bill Y |
author_sort | Lynn, Henry S |
collection | PubMed |
description | BACKGROUND: Multi-dimensional behavioral rating scales like the CBCL and YSR are available for diagnosing psychosocial maladjustment in adolescents, but these are unsuitable for large-scale usage since they are time-consuming and their many sensitive questions often lead to missing data. This research applies multiple imputation to tackle the effects of missing data in order to develop a simple questionnaire-based predictive instrument for psychosocial maladjustment. METHODS: Questionnaires from 2919 Chinese sixth graders in 21 schools were collected, but 86% of the students were missing one or more of the variables for analysis. Fifteen (10 training, 5 validation) samples were imputed using multivariate imputation chain equations. A ten-variable instrument was constructed by applying stepwise variable selection algorithms to the training samples, and its predictive performance was evaluated on the validation samples. RESULTS: The instrument had an AUC of 0.75 (95% CI: 0.73 to 0.78) and a calibration slope of 0.98 (95% CI: 0.86 to 1.09). The prevalence of psychosocial maladjustment was 18%. If a score of > 1 was used to define a negative test, then 80% of the students would be classified as negative. The resulting test had a diagnostic odds ratio of 5.64 (95% CI: 4.39 to 7.24), with negative and positive predictive values of 88% and 43%, and negative and positive likelihood ratios of 0.61 and 3.41, respectively. CONCLUSIONS: Multiple imputation together with internal validation provided a simple method for deriving a predictive instrument in the presence of missing data. The instrument's high negative predictive value implies that in populations with similar prevalences of psychosocial maladjustment test-negative students can be confidently excluded as being normal, thus saving 80% of the resources for confirmatory psychological testing. |
format | Online Article Text |
id | pubmed-3176250 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-31762502011-09-20 Developing a predictive tool for psychological well-being among Chinese adolescents in the presence of missing data Lynn, Henry S Tsang, Bill Y BMC Med Res Methodol Research Article BACKGROUND: Multi-dimensional behavioral rating scales like the CBCL and YSR are available for diagnosing psychosocial maladjustment in adolescents, but these are unsuitable for large-scale usage since they are time-consuming and their many sensitive questions often lead to missing data. This research applies multiple imputation to tackle the effects of missing data in order to develop a simple questionnaire-based predictive instrument for psychosocial maladjustment. METHODS: Questionnaires from 2919 Chinese sixth graders in 21 schools were collected, but 86% of the students were missing one or more of the variables for analysis. Fifteen (10 training, 5 validation) samples were imputed using multivariate imputation chain equations. A ten-variable instrument was constructed by applying stepwise variable selection algorithms to the training samples, and its predictive performance was evaluated on the validation samples. RESULTS: The instrument had an AUC of 0.75 (95% CI: 0.73 to 0.78) and a calibration slope of 0.98 (95% CI: 0.86 to 1.09). The prevalence of psychosocial maladjustment was 18%. If a score of > 1 was used to define a negative test, then 80% of the students would be classified as negative. The resulting test had a diagnostic odds ratio of 5.64 (95% CI: 4.39 to 7.24), with negative and positive predictive values of 88% and 43%, and negative and positive likelihood ratios of 0.61 and 3.41, respectively. CONCLUSIONS: Multiple imputation together with internal validation provided a simple method for deriving a predictive instrument in the presence of missing data. The instrument's high negative predictive value implies that in populations with similar prevalences of psychosocial maladjustment test-negative students can be confidently excluded as being normal, thus saving 80% of the resources for confirmatory psychological testing. BioMed Central 2011-08-19 /pmc/articles/PMC3176250/ /pubmed/21854626 http://dx.doi.org/10.1186/1471-2288-11-119 Text en Copyright ©2011 Lynn and Tsang; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Lynn, Henry S Tsang, Bill Y Developing a predictive tool for psychological well-being among Chinese adolescents in the presence of missing data |
title | Developing a predictive tool for psychological well-being among Chinese adolescents in the presence of missing data |
title_full | Developing a predictive tool for psychological well-being among Chinese adolescents in the presence of missing data |
title_fullStr | Developing a predictive tool for psychological well-being among Chinese adolescents in the presence of missing data |
title_full_unstemmed | Developing a predictive tool for psychological well-being among Chinese adolescents in the presence of missing data |
title_short | Developing a predictive tool for psychological well-being among Chinese adolescents in the presence of missing data |
title_sort | developing a predictive tool for psychological well-being among chinese adolescents in the presence of missing data |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3176250/ https://www.ncbi.nlm.nih.gov/pubmed/21854626 http://dx.doi.org/10.1186/1471-2288-11-119 |
work_keys_str_mv | AT lynnhenrys developingapredictivetoolforpsychologicalwellbeingamongchineseadolescentsinthepresenceofmissingdata AT tsangbilly developingapredictivetoolforpsychologicalwellbeingamongchineseadolescentsinthepresenceofmissingdata |