Cargando…
The Regulation of Skeletal Muscle Protein Turnover during the Progression of Cancer Cachexia in the Apc(Min/+) Mouse
Muscle wasting that occurs with cancer cachexia is caused by an imbalance in the rates of muscle protein synthesis and degradation. The Apc(Min/+) mouse is a model of colorectal cancer that develops cachexia that is dependent on circulating IL-6. However, the IL-6 regulation of muscle protein turnov...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3176277/ https://www.ncbi.nlm.nih.gov/pubmed/21949739 http://dx.doi.org/10.1371/journal.pone.0024650 |
_version_ | 1782212209616617472 |
---|---|
author | White, James P. Baynes, John W. Welle, Stephen L. Kostek, Matthew C. Matesic, Lydia E. Sato, Shuichi Carson, James A. |
author_facet | White, James P. Baynes, John W. Welle, Stephen L. Kostek, Matthew C. Matesic, Lydia E. Sato, Shuichi Carson, James A. |
author_sort | White, James P. |
collection | PubMed |
description | Muscle wasting that occurs with cancer cachexia is caused by an imbalance in the rates of muscle protein synthesis and degradation. The Apc(Min/+) mouse is a model of colorectal cancer that develops cachexia that is dependent on circulating IL-6. However, the IL-6 regulation of muscle protein turnover during the initiation and progression of cachexia in the Apc(Min/+) mouse is not known. Cachexia progression was studied in Apc(Min/+) mice that were either weight stable (WS) or had initial (≤5%), intermediate (6–19%), or extreme (≥20%) body weight loss. The initiation of cachexia reduced %MPS 19% and a further ∼50% with additional weight loss. Muscle IGF-1 mRNA expression and mTOR targets were suppressed with the progression of body weight loss, while muscle AMPK phosphorylation (Thr 172), AMPK activity, and raptor phosphorylation (Ser 792) were not increased with the initiation of weight loss, but were induced as cachexia progressed. ATP dependent protein degradation increased during the initiation and progression of cachexia. However, ATP independent protein degradation was not increased until cachexia had progressed beyond the initial phase. IL-6 receptor antibody administration prevented body weight loss and suppressed muscle protein degradation, without any effect on muscle %MPS or IGF-1 associated signaling. In summary, the %MPS reduction during the initiation of cachexia is associated with IGF-1/mTOR signaling repression, while muscle AMPK activation and activation of ATP independent protein degradation occur later in the progression of cachexia. IL-6 receptor antibody treatment blocked cachexia progression through the suppression of muscle protein degradation, while not rescuing the suppression of muscle protein synthesis. Attenuation of IL-6 signaling was effective in blocking the progression of cachexia, but not sufficient to reverse the process. |
format | Online Article Text |
id | pubmed-3176277 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-31762772011-09-26 The Regulation of Skeletal Muscle Protein Turnover during the Progression of Cancer Cachexia in the Apc(Min/+) Mouse White, James P. Baynes, John W. Welle, Stephen L. Kostek, Matthew C. Matesic, Lydia E. Sato, Shuichi Carson, James A. PLoS One Research Article Muscle wasting that occurs with cancer cachexia is caused by an imbalance in the rates of muscle protein synthesis and degradation. The Apc(Min/+) mouse is a model of colorectal cancer that develops cachexia that is dependent on circulating IL-6. However, the IL-6 regulation of muscle protein turnover during the initiation and progression of cachexia in the Apc(Min/+) mouse is not known. Cachexia progression was studied in Apc(Min/+) mice that were either weight stable (WS) or had initial (≤5%), intermediate (6–19%), or extreme (≥20%) body weight loss. The initiation of cachexia reduced %MPS 19% and a further ∼50% with additional weight loss. Muscle IGF-1 mRNA expression and mTOR targets were suppressed with the progression of body weight loss, while muscle AMPK phosphorylation (Thr 172), AMPK activity, and raptor phosphorylation (Ser 792) were not increased with the initiation of weight loss, but were induced as cachexia progressed. ATP dependent protein degradation increased during the initiation and progression of cachexia. However, ATP independent protein degradation was not increased until cachexia had progressed beyond the initial phase. IL-6 receptor antibody administration prevented body weight loss and suppressed muscle protein degradation, without any effect on muscle %MPS or IGF-1 associated signaling. In summary, the %MPS reduction during the initiation of cachexia is associated with IGF-1/mTOR signaling repression, while muscle AMPK activation and activation of ATP independent protein degradation occur later in the progression of cachexia. IL-6 receptor antibody treatment blocked cachexia progression through the suppression of muscle protein degradation, while not rescuing the suppression of muscle protein synthesis. Attenuation of IL-6 signaling was effective in blocking the progression of cachexia, but not sufficient to reverse the process. Public Library of Science 2011-09-19 /pmc/articles/PMC3176277/ /pubmed/21949739 http://dx.doi.org/10.1371/journal.pone.0024650 Text en White et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article White, James P. Baynes, John W. Welle, Stephen L. Kostek, Matthew C. Matesic, Lydia E. Sato, Shuichi Carson, James A. The Regulation of Skeletal Muscle Protein Turnover during the Progression of Cancer Cachexia in the Apc(Min/+) Mouse |
title | The Regulation of Skeletal Muscle Protein Turnover during the Progression of Cancer Cachexia in the Apc(Min/+) Mouse |
title_full | The Regulation of Skeletal Muscle Protein Turnover during the Progression of Cancer Cachexia in the Apc(Min/+) Mouse |
title_fullStr | The Regulation of Skeletal Muscle Protein Turnover during the Progression of Cancer Cachexia in the Apc(Min/+) Mouse |
title_full_unstemmed | The Regulation of Skeletal Muscle Protein Turnover during the Progression of Cancer Cachexia in the Apc(Min/+) Mouse |
title_short | The Regulation of Skeletal Muscle Protein Turnover during the Progression of Cancer Cachexia in the Apc(Min/+) Mouse |
title_sort | regulation of skeletal muscle protein turnover during the progression of cancer cachexia in the apc(min/+) mouse |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3176277/ https://www.ncbi.nlm.nih.gov/pubmed/21949739 http://dx.doi.org/10.1371/journal.pone.0024650 |
work_keys_str_mv | AT whitejamesp theregulationofskeletalmuscleproteinturnoverduringtheprogressionofcancercachexiaintheapcminmouse AT baynesjohnw theregulationofskeletalmuscleproteinturnoverduringtheprogressionofcancercachexiaintheapcminmouse AT wellestephenl theregulationofskeletalmuscleproteinturnoverduringtheprogressionofcancercachexiaintheapcminmouse AT kostekmatthewc theregulationofskeletalmuscleproteinturnoverduringtheprogressionofcancercachexiaintheapcminmouse AT matesiclydiae theregulationofskeletalmuscleproteinturnoverduringtheprogressionofcancercachexiaintheapcminmouse AT satoshuichi theregulationofskeletalmuscleproteinturnoverduringtheprogressionofcancercachexiaintheapcminmouse AT carsonjamesa theregulationofskeletalmuscleproteinturnoverduringtheprogressionofcancercachexiaintheapcminmouse AT whitejamesp regulationofskeletalmuscleproteinturnoverduringtheprogressionofcancercachexiaintheapcminmouse AT baynesjohnw regulationofskeletalmuscleproteinturnoverduringtheprogressionofcancercachexiaintheapcminmouse AT wellestephenl regulationofskeletalmuscleproteinturnoverduringtheprogressionofcancercachexiaintheapcminmouse AT kostekmatthewc regulationofskeletalmuscleproteinturnoverduringtheprogressionofcancercachexiaintheapcminmouse AT matesiclydiae regulationofskeletalmuscleproteinturnoverduringtheprogressionofcancercachexiaintheapcminmouse AT satoshuichi regulationofskeletalmuscleproteinturnoverduringtheprogressionofcancercachexiaintheapcminmouse AT carsonjamesa regulationofskeletalmuscleproteinturnoverduringtheprogressionofcancercachexiaintheapcminmouse |