Cargando…

The Regulation of Skeletal Muscle Protein Turnover during the Progression of Cancer Cachexia in the Apc(Min/+) Mouse

Muscle wasting that occurs with cancer cachexia is caused by an imbalance in the rates of muscle protein synthesis and degradation. The Apc(Min/+) mouse is a model of colorectal cancer that develops cachexia that is dependent on circulating IL-6. However, the IL-6 regulation of muscle protein turnov...

Descripción completa

Detalles Bibliográficos
Autores principales: White, James P., Baynes, John W., Welle, Stephen L., Kostek, Matthew C., Matesic, Lydia E., Sato, Shuichi, Carson, James A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3176277/
https://www.ncbi.nlm.nih.gov/pubmed/21949739
http://dx.doi.org/10.1371/journal.pone.0024650
_version_ 1782212209616617472
author White, James P.
Baynes, John W.
Welle, Stephen L.
Kostek, Matthew C.
Matesic, Lydia E.
Sato, Shuichi
Carson, James A.
author_facet White, James P.
Baynes, John W.
Welle, Stephen L.
Kostek, Matthew C.
Matesic, Lydia E.
Sato, Shuichi
Carson, James A.
author_sort White, James P.
collection PubMed
description Muscle wasting that occurs with cancer cachexia is caused by an imbalance in the rates of muscle protein synthesis and degradation. The Apc(Min/+) mouse is a model of colorectal cancer that develops cachexia that is dependent on circulating IL-6. However, the IL-6 regulation of muscle protein turnover during the initiation and progression of cachexia in the Apc(Min/+) mouse is not known. Cachexia progression was studied in Apc(Min/+) mice that were either weight stable (WS) or had initial (≤5%), intermediate (6–19%), or extreme (≥20%) body weight loss. The initiation of cachexia reduced %MPS 19% and a further ∼50% with additional weight loss. Muscle IGF-1 mRNA expression and mTOR targets were suppressed with the progression of body weight loss, while muscle AMPK phosphorylation (Thr 172), AMPK activity, and raptor phosphorylation (Ser 792) were not increased with the initiation of weight loss, but were induced as cachexia progressed. ATP dependent protein degradation increased during the initiation and progression of cachexia. However, ATP independent protein degradation was not increased until cachexia had progressed beyond the initial phase. IL-6 receptor antibody administration prevented body weight loss and suppressed muscle protein degradation, without any effect on muscle %MPS or IGF-1 associated signaling. In summary, the %MPS reduction during the initiation of cachexia is associated with IGF-1/mTOR signaling repression, while muscle AMPK activation and activation of ATP independent protein degradation occur later in the progression of cachexia. IL-6 receptor antibody treatment blocked cachexia progression through the suppression of muscle protein degradation, while not rescuing the suppression of muscle protein synthesis. Attenuation of IL-6 signaling was effective in blocking the progression of cachexia, but not sufficient to reverse the process.
format Online
Article
Text
id pubmed-3176277
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-31762772011-09-26 The Regulation of Skeletal Muscle Protein Turnover during the Progression of Cancer Cachexia in the Apc(Min/+) Mouse White, James P. Baynes, John W. Welle, Stephen L. Kostek, Matthew C. Matesic, Lydia E. Sato, Shuichi Carson, James A. PLoS One Research Article Muscle wasting that occurs with cancer cachexia is caused by an imbalance in the rates of muscle protein synthesis and degradation. The Apc(Min/+) mouse is a model of colorectal cancer that develops cachexia that is dependent on circulating IL-6. However, the IL-6 regulation of muscle protein turnover during the initiation and progression of cachexia in the Apc(Min/+) mouse is not known. Cachexia progression was studied in Apc(Min/+) mice that were either weight stable (WS) or had initial (≤5%), intermediate (6–19%), or extreme (≥20%) body weight loss. The initiation of cachexia reduced %MPS 19% and a further ∼50% with additional weight loss. Muscle IGF-1 mRNA expression and mTOR targets were suppressed with the progression of body weight loss, while muscle AMPK phosphorylation (Thr 172), AMPK activity, and raptor phosphorylation (Ser 792) were not increased with the initiation of weight loss, but were induced as cachexia progressed. ATP dependent protein degradation increased during the initiation and progression of cachexia. However, ATP independent protein degradation was not increased until cachexia had progressed beyond the initial phase. IL-6 receptor antibody administration prevented body weight loss and suppressed muscle protein degradation, without any effect on muscle %MPS or IGF-1 associated signaling. In summary, the %MPS reduction during the initiation of cachexia is associated with IGF-1/mTOR signaling repression, while muscle AMPK activation and activation of ATP independent protein degradation occur later in the progression of cachexia. IL-6 receptor antibody treatment blocked cachexia progression through the suppression of muscle protein degradation, while not rescuing the suppression of muscle protein synthesis. Attenuation of IL-6 signaling was effective in blocking the progression of cachexia, but not sufficient to reverse the process. Public Library of Science 2011-09-19 /pmc/articles/PMC3176277/ /pubmed/21949739 http://dx.doi.org/10.1371/journal.pone.0024650 Text en White et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
White, James P.
Baynes, John W.
Welle, Stephen L.
Kostek, Matthew C.
Matesic, Lydia E.
Sato, Shuichi
Carson, James A.
The Regulation of Skeletal Muscle Protein Turnover during the Progression of Cancer Cachexia in the Apc(Min/+) Mouse
title The Regulation of Skeletal Muscle Protein Turnover during the Progression of Cancer Cachexia in the Apc(Min/+) Mouse
title_full The Regulation of Skeletal Muscle Protein Turnover during the Progression of Cancer Cachexia in the Apc(Min/+) Mouse
title_fullStr The Regulation of Skeletal Muscle Protein Turnover during the Progression of Cancer Cachexia in the Apc(Min/+) Mouse
title_full_unstemmed The Regulation of Skeletal Muscle Protein Turnover during the Progression of Cancer Cachexia in the Apc(Min/+) Mouse
title_short The Regulation of Skeletal Muscle Protein Turnover during the Progression of Cancer Cachexia in the Apc(Min/+) Mouse
title_sort regulation of skeletal muscle protein turnover during the progression of cancer cachexia in the apc(min/+) mouse
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3176277/
https://www.ncbi.nlm.nih.gov/pubmed/21949739
http://dx.doi.org/10.1371/journal.pone.0024650
work_keys_str_mv AT whitejamesp theregulationofskeletalmuscleproteinturnoverduringtheprogressionofcancercachexiaintheapcminmouse
AT baynesjohnw theregulationofskeletalmuscleproteinturnoverduringtheprogressionofcancercachexiaintheapcminmouse
AT wellestephenl theregulationofskeletalmuscleproteinturnoverduringtheprogressionofcancercachexiaintheapcminmouse
AT kostekmatthewc theregulationofskeletalmuscleproteinturnoverduringtheprogressionofcancercachexiaintheapcminmouse
AT matesiclydiae theregulationofskeletalmuscleproteinturnoverduringtheprogressionofcancercachexiaintheapcminmouse
AT satoshuichi theregulationofskeletalmuscleproteinturnoverduringtheprogressionofcancercachexiaintheapcminmouse
AT carsonjamesa theregulationofskeletalmuscleproteinturnoverduringtheprogressionofcancercachexiaintheapcminmouse
AT whitejamesp regulationofskeletalmuscleproteinturnoverduringtheprogressionofcancercachexiaintheapcminmouse
AT baynesjohnw regulationofskeletalmuscleproteinturnoverduringtheprogressionofcancercachexiaintheapcminmouse
AT wellestephenl regulationofskeletalmuscleproteinturnoverduringtheprogressionofcancercachexiaintheapcminmouse
AT kostekmatthewc regulationofskeletalmuscleproteinturnoverduringtheprogressionofcancercachexiaintheapcminmouse
AT matesiclydiae regulationofskeletalmuscleproteinturnoverduringtheprogressionofcancercachexiaintheapcminmouse
AT satoshuichi regulationofskeletalmuscleproteinturnoverduringtheprogressionofcancercachexiaintheapcminmouse
AT carsonjamesa regulationofskeletalmuscleproteinturnoverduringtheprogressionofcancercachexiaintheapcminmouse