Cargando…
Opposite effect of capsaicin and capsazepine on behavioral thermoregulation in insects
Transient receptor potential channels are implicated in thermosensation both in mammals and insects. The aim of our study was to assess the effect of mammalian vanilloid receptor subtype 1 (TRPV1) agonist (capsaicin) and antagonist (capsazepine) on insect behavioral thermoregulation. We tested behav...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer-Verlag
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3176404/ https://www.ncbi.nlm.nih.gov/pubmed/21667066 http://dx.doi.org/10.1007/s00359-011-0657-2 |
Sumario: | Transient receptor potential channels are implicated in thermosensation both in mammals and insects. The aim of our study was to assess the effect of mammalian vanilloid receptor subtype 1 (TRPV1) agonist (capsaicin) and antagonist (capsazepine) on insect behavioral thermoregulation. We tested behavioral thermoregulation of mealworms larvae intoxicated with capsaicin and capsazepine in two concentrations (10(−7) and 10(−4) M) in a thermal gradient system for 3 days. Our results revealed that in low concentration, capsaicin induces seeking lower temperatures than the ones selected by the insects that were not intoxicated. After application of capsazepine in the same concentration, the mealworms prefer higher temperatures than the control group. The observed opposite effect of TRPV1 agonist and antagonist on insect behavioral thermoregulation, which is similar to the effect of these substances on thermoregulation in mammals, indicates indirectly that capsaicin may act on receptors in insects that are functionally similar to TRPV1. |
---|