Cargando…

Dietary restriction delays aging, but not neuronal dysfunction, in Drosophila models of Alzheimer's disease

Dietary restriction (DR) extends lifespan in diverse organisms and, in animal and cellular models, can delay a range of aging-related diseases including Alzheimer's disease (AD). A better understanding of the mechanisms mediating these interactions, however, may reveal novel pathways involved i...

Descripción completa

Detalles Bibliográficos
Autores principales: Kerr, F., Augustin, H., Piper, M.D.W., Gandy, C., Allen, M.J., Lovestone, S., Partridge, L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3176895/
https://www.ncbi.nlm.nih.gov/pubmed/19969390
http://dx.doi.org/10.1016/j.neurobiolaging.2009.10.015
_version_ 1782212261272616960
author Kerr, F.
Augustin, H.
Piper, M.D.W.
Gandy, C.
Allen, M.J.
Lovestone, S.
Partridge, L.
author_facet Kerr, F.
Augustin, H.
Piper, M.D.W.
Gandy, C.
Allen, M.J.
Lovestone, S.
Partridge, L.
author_sort Kerr, F.
collection PubMed
description Dietary restriction (DR) extends lifespan in diverse organisms and, in animal and cellular models, can delay a range of aging-related diseases including Alzheimer's disease (AD). A better understanding of the mechanisms mediating these interactions, however, may reveal novel pathways involved in AD pathogenesis, and potential targets for disease-modifying treatments and biomarkers for disease progression. Drosophila models of AD have recently been developed and, due to their short lifespan and susceptibility to genetic manipulation, we have used the fly to investigate the molecular connections among diet, aging and AD pathology. DR extended lifespan in both Arctic mutant Aβ42 and WT 4R tau over-expressing flies, but the underlying molecular pathology was not altered and neuronal dysfunction was not prevented by dietary manipulation. Our data suggest that DR may alter aging through generalised mechanisms independent of the specific pathways underlying AD pathogenesis in the fly, and hence that lifespan-extending manipulations may have varying effects on aging and functional declines in aging-related diseases. Alternatively, our analysis of the specific effects of DR on neuronal toxicity downstream of Aβ and tau pathologies with negative results may simply confirm that the neuro-protective effects of DR are upstream of the initiating events involved in the pathogenesis of AD.
format Online
Article
Text
id pubmed-3176895
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-31768952011-11-08 Dietary restriction delays aging, but not neuronal dysfunction, in Drosophila models of Alzheimer's disease Kerr, F. Augustin, H. Piper, M.D.W. Gandy, C. Allen, M.J. Lovestone, S. Partridge, L. Neurobiol Aging Article Dietary restriction (DR) extends lifespan in diverse organisms and, in animal and cellular models, can delay a range of aging-related diseases including Alzheimer's disease (AD). A better understanding of the mechanisms mediating these interactions, however, may reveal novel pathways involved in AD pathogenesis, and potential targets for disease-modifying treatments and biomarkers for disease progression. Drosophila models of AD have recently been developed and, due to their short lifespan and susceptibility to genetic manipulation, we have used the fly to investigate the molecular connections among diet, aging and AD pathology. DR extended lifespan in both Arctic mutant Aβ42 and WT 4R tau over-expressing flies, but the underlying molecular pathology was not altered and neuronal dysfunction was not prevented by dietary manipulation. Our data suggest that DR may alter aging through generalised mechanisms independent of the specific pathways underlying AD pathogenesis in the fly, and hence that lifespan-extending manipulations may have varying effects on aging and functional declines in aging-related diseases. Alternatively, our analysis of the specific effects of DR on neuronal toxicity downstream of Aβ and tau pathologies with negative results may simply confirm that the neuro-protective effects of DR are upstream of the initiating events involved in the pathogenesis of AD. Elsevier 2011-11 /pmc/articles/PMC3176895/ /pubmed/19969390 http://dx.doi.org/10.1016/j.neurobiolaging.2009.10.015 Text en © 2011 Elsevier Inc. https://creativecommons.org/licenses/by/3.0/ Open Access under CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/) license
spellingShingle Article
Kerr, F.
Augustin, H.
Piper, M.D.W.
Gandy, C.
Allen, M.J.
Lovestone, S.
Partridge, L.
Dietary restriction delays aging, but not neuronal dysfunction, in Drosophila models of Alzheimer's disease
title Dietary restriction delays aging, but not neuronal dysfunction, in Drosophila models of Alzheimer's disease
title_full Dietary restriction delays aging, but not neuronal dysfunction, in Drosophila models of Alzheimer's disease
title_fullStr Dietary restriction delays aging, but not neuronal dysfunction, in Drosophila models of Alzheimer's disease
title_full_unstemmed Dietary restriction delays aging, but not neuronal dysfunction, in Drosophila models of Alzheimer's disease
title_short Dietary restriction delays aging, but not neuronal dysfunction, in Drosophila models of Alzheimer's disease
title_sort dietary restriction delays aging, but not neuronal dysfunction, in drosophila models of alzheimer's disease
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3176895/
https://www.ncbi.nlm.nih.gov/pubmed/19969390
http://dx.doi.org/10.1016/j.neurobiolaging.2009.10.015
work_keys_str_mv AT kerrf dietaryrestrictiondelaysagingbutnotneuronaldysfunctionindrosophilamodelsofalzheimersdisease
AT augustinh dietaryrestrictiondelaysagingbutnotneuronaldysfunctionindrosophilamodelsofalzheimersdisease
AT pipermdw dietaryrestrictiondelaysagingbutnotneuronaldysfunctionindrosophilamodelsofalzheimersdisease
AT gandyc dietaryrestrictiondelaysagingbutnotneuronaldysfunctionindrosophilamodelsofalzheimersdisease
AT allenmj dietaryrestrictiondelaysagingbutnotneuronaldysfunctionindrosophilamodelsofalzheimersdisease
AT lovestones dietaryrestrictiondelaysagingbutnotneuronaldysfunctionindrosophilamodelsofalzheimersdisease
AT partridgel dietaryrestrictiondelaysagingbutnotneuronaldysfunctionindrosophilamodelsofalzheimersdisease