Cargando…

Transversal Stiffness and Beta-Actin and Alpha-Actinin-4 Content of the M. Soleus Fibers in the Conditions of a 3-Day Reloading after 14-Day Gravitational Unloading

The aim of the work was to analyze the structural changes in different parts of the sarcolemma and contractile apparatus of muscle fibers by measuring their transversal stiffness by atomic force microscopy in a three-day reloading after a 14-day gravity disuse, which was carried out by hind-limbs su...

Descripción completa

Detalles Bibliográficos
Autor principal: Ogneva, I. V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3177293/
https://www.ncbi.nlm.nih.gov/pubmed/21941432
http://dx.doi.org/10.1155/2011/393405
Descripción
Sumario:The aim of the work was to analyze the structural changes in different parts of the sarcolemma and contractile apparatus of muscle fibers by measuring their transversal stiffness by atomic force microscopy in a three-day reloading after a 14-day gravity disuse, which was carried out by hind-limbs suspension. The object of the study was the soleus muscle of the Wistar rat. It was shown that after 14 days of disuse, there was a reduction of transversal stiffness of all points of the sarcolemma and contractile apparatus. Readaptation for 3 days leads to complete recovery of the values of the transversal stiffness of the sarcolemma and to partial value recovery of the contractile apparatus. The changes in transversal stiffness of sarcolemma correlate with beta-actin and alpha-actinin-4 in membrane protein fractions.