Cargando…

Increased Expression of Foxj1 after Traumatic Brain Injury

Foxj1 is a member of the Forkhead/winged-helix (Fox) family of transcription factors, which is required for postnatal differentiation of ependymal cells and a subset of astrocytes in the subventricular zone. The subpopulation of astrocytes has the ability of self-renew and neurogenic potential diffe...

Descripción completa

Detalles Bibliográficos
Autores principales: Cui, Gang, Yu, Zhihua, Li, Zhen, Wang, Wei, Lu, Ting, Qian, Chunhui, Li, Jiliang, Ding, Yunlin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Humana Press Inc 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3178760/
https://www.ncbi.nlm.nih.gov/pubmed/21347518
http://dx.doi.org/10.1007/s12031-011-9504-8
Descripción
Sumario:Foxj1 is a member of the Forkhead/winged-helix (Fox) family of transcription factors, which is required for postnatal differentiation of ependymal cells and a subset of astrocytes in the subventricular zone. The subpopulation of astrocytes has the ability of self-renew and neurogenic potential differentiated into astrocytes, oligodendrocytes, and neurons. However, its expression and function in the central nervous system lesion are not well understood. In this study, we performed a traumatic brain injury (TBI) model in adult rats and investigated the changed expression of Foxj1 in the brain cortex. Western blot and immunohistochemistry analysis showed that the expression of Foxj1 gradually increased, reached a peak at day 3 after TBI, and declined during the following days. Double immunofluorescence staining revealed that Foxj1 was co-expressed with MAP-2 and GFAP. In addition, we detected that Ki67 had the co-localization with NeuN, GFAP, and Foxj1. All our findings suggested that Foxj1 may be involved in the pathophysiology of brain after TBI.