Cargando…

Life or Death? A Physiogenomic Approach to Understand Individual Variation in Responses to Hemorrhagic Shock

Severe hemorrhage due to trauma is a major cause of death throughout the world. It has often been observed that some victims are able to withstand hemorrhage better than others. For decades investigators have attempted to identify physiological mechanisms that distinguish survivors from nonsurvivors...

Descripción completa

Detalles Bibliográficos
Autores principales: Klemcke, Harold G, Joe, Bina, Rose, Rajiv, Ryan, Kathy L
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Bentham Science Publishers 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3178911/
https://www.ncbi.nlm.nih.gov/pubmed/22379396
http://dx.doi.org/10.2174/138920211797248574
Descripción
Sumario:Severe hemorrhage due to trauma is a major cause of death throughout the world. It has often been observed that some victims are able to withstand hemorrhage better than others. For decades investigators have attempted to identify physiological mechanisms that distinguish survivors from nonsurvivors for the purpose of providing more informed therapies. As an alternative approach to address this issue, we have initiated a research program to identify genes and genetic mechanisms that contribute to this phenotype of survival time after controlled hemorrhage. From physiogenomic studies using inbred rat strains, we have demonstrated that this phenotype is a heritable quantitative trait, and is therefore a complex trait regulated by multiple genes. Our work continues to identify quantitative trait loci as well as potential epigenetic mechanisms that might influence survival time after severe hemorrhage. Our ultimate goal is to improve survival to traumatic hemorrhage and attendant shock via regulation of genetic mechanisms and to provide knowledge that will lead to genetically-informed personalized treatments.