Cargando…
Intermediates in the Protein Folding Process: A Computational Model
The paper presents a model for simulating the protein folding process in silico. The two-step model (which consists of the early stage—ES and the late stage—LS) is verified using two proteins, one of which is treated (according to experimental observations) as the early stage and the second as an ex...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3179136/ https://www.ncbi.nlm.nih.gov/pubmed/21954329 http://dx.doi.org/10.3390/ijms11084850 |
_version_ | 1782212485550440448 |
---|---|
author | Roterman, Irena Konieczny, Leszek Banach, Mateusz Jurkowski, Wiktor |
author_facet | Roterman, Irena Konieczny, Leszek Banach, Mateusz Jurkowski, Wiktor |
author_sort | Roterman, Irena |
collection | PubMed |
description | The paper presents a model for simulating the protein folding process in silico. The two-step model (which consists of the early stage—ES and the late stage—LS) is verified using two proteins, one of which is treated (according to experimental observations) as the early stage and the second as an example of the LS step. The early stage is based solely on backbone structural preferences, while the LS model takes into account the water environment, treated as an external hydrophobic force field and represented by a 3D Gauss function. The characteristics of 1ZTR (the ES intermediate, as compared with 1ENH, which is the LS intermediate) confirm the link between the gradual disappearance of ES characteristics in LS structural forms and the simultaneous emergence of LS properties in the 1ENH protein. Positive verification of ES and LS characteristics in these two proteins (1ZTR and 1ENH respectively) suggest potential applicability of the presented model to in silico protein folding simulations. |
format | Online Article Text |
id | pubmed-3179136 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Molecular Diversity Preservation International (MDPI) |
record_format | MEDLINE/PubMed |
spelling | pubmed-31791362011-09-27 Intermediates in the Protein Folding Process: A Computational Model Roterman, Irena Konieczny, Leszek Banach, Mateusz Jurkowski, Wiktor Int J Mol Sci Article The paper presents a model for simulating the protein folding process in silico. The two-step model (which consists of the early stage—ES and the late stage—LS) is verified using two proteins, one of which is treated (according to experimental observations) as the early stage and the second as an example of the LS step. The early stage is based solely on backbone structural preferences, while the LS model takes into account the water environment, treated as an external hydrophobic force field and represented by a 3D Gauss function. The characteristics of 1ZTR (the ES intermediate, as compared with 1ENH, which is the LS intermediate) confirm the link between the gradual disappearance of ES characteristics in LS structural forms and the simultaneous emergence of LS properties in the 1ENH protein. Positive verification of ES and LS characteristics in these two proteins (1ZTR and 1ENH respectively) suggest potential applicability of the presented model to in silico protein folding simulations. Molecular Diversity Preservation International (MDPI) 2011-07-29 /pmc/articles/PMC3179136/ /pubmed/21954329 http://dx.doi.org/10.3390/ijms11084850 Text en © 2011 by the authors; licensee MDPI, Basel, Switzerland. http://creativecommons.org/licenses/by/3.0 This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Article Roterman, Irena Konieczny, Leszek Banach, Mateusz Jurkowski, Wiktor Intermediates in the Protein Folding Process: A Computational Model |
title | Intermediates in the Protein Folding Process: A Computational Model |
title_full | Intermediates in the Protein Folding Process: A Computational Model |
title_fullStr | Intermediates in the Protein Folding Process: A Computational Model |
title_full_unstemmed | Intermediates in the Protein Folding Process: A Computational Model |
title_short | Intermediates in the Protein Folding Process: A Computational Model |
title_sort | intermediates in the protein folding process: a computational model |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3179136/ https://www.ncbi.nlm.nih.gov/pubmed/21954329 http://dx.doi.org/10.3390/ijms11084850 |
work_keys_str_mv | AT rotermanirena intermediatesintheproteinfoldingprocessacomputationalmodel AT koniecznyleszek intermediatesintheproteinfoldingprocessacomputationalmodel AT banachmateusz intermediatesintheproteinfoldingprocessacomputationalmodel AT jurkowskiwiktor intermediatesintheproteinfoldingprocessacomputationalmodel |