Cargando…

Epidermal Growth Factor Receptor Plays an Anabolic Role in Bone Metabolism In Vivo

While the epidermal growth factor receptor (EGFR)–mediated signaling pathway has been shown to have vital roles in many developmental and pathologic processes, its functions in the development and homeostasis of the skeletal system has been poorly defined. To address its in vivo role, we constructed...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Xianrong, Tamasi, Joseph, Lu, Xin, Zhu, Ji, Chen, Haiyan, Tian, Xiaoyan, Lee, Tang-Cheng, Threadgill, David W, Kream, Barbara E, Kang, Yibin, Partridge, Nicola C, Qin, Ling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wiley Subscription Services, Inc., A Wiley Company 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3179301/
https://www.ncbi.nlm.nih.gov/pubmed/21542005
http://dx.doi.org/10.1002/jbmr.295
_version_ 1782212502078095360
author Zhang, Xianrong
Tamasi, Joseph
Lu, Xin
Zhu, Ji
Chen, Haiyan
Tian, Xiaoyan
Lee, Tang-Cheng
Threadgill, David W
Kream, Barbara E
Kang, Yibin
Partridge, Nicola C
Qin, Ling
author_facet Zhang, Xianrong
Tamasi, Joseph
Lu, Xin
Zhu, Ji
Chen, Haiyan
Tian, Xiaoyan
Lee, Tang-Cheng
Threadgill, David W
Kream, Barbara E
Kang, Yibin
Partridge, Nicola C
Qin, Ling
author_sort Zhang, Xianrong
collection PubMed
description While the epidermal growth factor receptor (EGFR)–mediated signaling pathway has been shown to have vital roles in many developmental and pathologic processes, its functions in the development and homeostasis of the skeletal system has been poorly defined. To address its in vivo role, we constructed transgenic and pharmacologic mouse models and used peripheral quantitative computed tomography (pQCT), micro–computed tomography (µCT) and histomorphometry to analyze their trabecular and cortical bone phenotypes. We initially deleted the EGFR in preosteoblasts/osteoblasts using a Cre/loxP system (Col-Cre Egfr(f/f)), but no bone phenotype was observed because of incomplete deletion of the Egfr genomic locus. To further reduce the remaining osteoblastic EGFR activity, we introduced an EGFR dominant-negative allele, Wa5, and generated Col-Cre Egfr(Wa5/f) mice. At 3 and 7 months of age, both male and female mice exhibited a remarkable decrease in tibial trabecular bone mass with abnormalities in trabecular number and thickness. Histologic analyses revealed decreases in osteoblast number and mineralization activity and an increase in osteoclast number. Significant increases in trabecular pattern factor and structural model index indicate that trabecular microarchitecture was altered. The femurs of these mice were shorter and smaller with reduced cortical area and periosteal perimeter. Moreover, colony-forming unit–fibroblast (CFU-F) assay indicates that these mice had fewer bone marrow mesenchymal stem cells and committed progenitors. Similarly, administration of an EGFR inhibitor into wild-type mice caused a significant reduction in trabecular bone volume. In contrast, Egfr(Dsk5/+) mice with a constitutively active EGFR allele displayed increases in trabecular and cortical bone content. Taken together, these data demonstrate that the EGFR signaling pathway is an important bone regulator and that it primarily plays an anabolic role in bone metabolism. © 2011 American Society for Bone and Mineral Research.
format Online
Article
Text
id pubmed-3179301
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Wiley Subscription Services, Inc., A Wiley Company
record_format MEDLINE/PubMed
spelling pubmed-31793012012-05-01 Epidermal Growth Factor Receptor Plays an Anabolic Role in Bone Metabolism In Vivo Zhang, Xianrong Tamasi, Joseph Lu, Xin Zhu, Ji Chen, Haiyan Tian, Xiaoyan Lee, Tang-Cheng Threadgill, David W Kream, Barbara E Kang, Yibin Partridge, Nicola C Qin, Ling J Bone Miner Res Original Article While the epidermal growth factor receptor (EGFR)–mediated signaling pathway has been shown to have vital roles in many developmental and pathologic processes, its functions in the development and homeostasis of the skeletal system has been poorly defined. To address its in vivo role, we constructed transgenic and pharmacologic mouse models and used peripheral quantitative computed tomography (pQCT), micro–computed tomography (µCT) and histomorphometry to analyze their trabecular and cortical bone phenotypes. We initially deleted the EGFR in preosteoblasts/osteoblasts using a Cre/loxP system (Col-Cre Egfr(f/f)), but no bone phenotype was observed because of incomplete deletion of the Egfr genomic locus. To further reduce the remaining osteoblastic EGFR activity, we introduced an EGFR dominant-negative allele, Wa5, and generated Col-Cre Egfr(Wa5/f) mice. At 3 and 7 months of age, both male and female mice exhibited a remarkable decrease in tibial trabecular bone mass with abnormalities in trabecular number and thickness. Histologic analyses revealed decreases in osteoblast number and mineralization activity and an increase in osteoclast number. Significant increases in trabecular pattern factor and structural model index indicate that trabecular microarchitecture was altered. The femurs of these mice were shorter and smaller with reduced cortical area and periosteal perimeter. Moreover, colony-forming unit–fibroblast (CFU-F) assay indicates that these mice had fewer bone marrow mesenchymal stem cells and committed progenitors. Similarly, administration of an EGFR inhibitor into wild-type mice caused a significant reduction in trabecular bone volume. In contrast, Egfr(Dsk5/+) mice with a constitutively active EGFR allele displayed increases in trabecular and cortical bone content. Taken together, these data demonstrate that the EGFR signaling pathway is an important bone regulator and that it primarily plays an anabolic role in bone metabolism. © 2011 American Society for Bone and Mineral Research. Wiley Subscription Services, Inc., A Wiley Company 2011-05 2010-11-18 /pmc/articles/PMC3179301/ /pubmed/21542005 http://dx.doi.org/10.1002/jbmr.295 Text en Copyright © 2011 American Society for Bone and Mineral Research http://creativecommons.org/licenses/by/2.5/ Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.
spellingShingle Original Article
Zhang, Xianrong
Tamasi, Joseph
Lu, Xin
Zhu, Ji
Chen, Haiyan
Tian, Xiaoyan
Lee, Tang-Cheng
Threadgill, David W
Kream, Barbara E
Kang, Yibin
Partridge, Nicola C
Qin, Ling
Epidermal Growth Factor Receptor Plays an Anabolic Role in Bone Metabolism In Vivo
title Epidermal Growth Factor Receptor Plays an Anabolic Role in Bone Metabolism In Vivo
title_full Epidermal Growth Factor Receptor Plays an Anabolic Role in Bone Metabolism In Vivo
title_fullStr Epidermal Growth Factor Receptor Plays an Anabolic Role in Bone Metabolism In Vivo
title_full_unstemmed Epidermal Growth Factor Receptor Plays an Anabolic Role in Bone Metabolism In Vivo
title_short Epidermal Growth Factor Receptor Plays an Anabolic Role in Bone Metabolism In Vivo
title_sort epidermal growth factor receptor plays an anabolic role in bone metabolism in vivo
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3179301/
https://www.ncbi.nlm.nih.gov/pubmed/21542005
http://dx.doi.org/10.1002/jbmr.295
work_keys_str_mv AT zhangxianrong epidermalgrowthfactorreceptorplaysananabolicroleinbonemetabolisminvivo
AT tamasijoseph epidermalgrowthfactorreceptorplaysananabolicroleinbonemetabolisminvivo
AT luxin epidermalgrowthfactorreceptorplaysananabolicroleinbonemetabolisminvivo
AT zhuji epidermalgrowthfactorreceptorplaysananabolicroleinbonemetabolisminvivo
AT chenhaiyan epidermalgrowthfactorreceptorplaysananabolicroleinbonemetabolisminvivo
AT tianxiaoyan epidermalgrowthfactorreceptorplaysananabolicroleinbonemetabolisminvivo
AT leetangcheng epidermalgrowthfactorreceptorplaysananabolicroleinbonemetabolisminvivo
AT threadgilldavidw epidermalgrowthfactorreceptorplaysananabolicroleinbonemetabolisminvivo
AT kreambarbarae epidermalgrowthfactorreceptorplaysananabolicroleinbonemetabolisminvivo
AT kangyibin epidermalgrowthfactorreceptorplaysananabolicroleinbonemetabolisminvivo
AT partridgenicolac epidermalgrowthfactorreceptorplaysananabolicroleinbonemetabolisminvivo
AT qinling epidermalgrowthfactorreceptorplaysananabolicroleinbonemetabolisminvivo