Cargando…
Screening trematodes for novel intervention targets: a proteomic and immunological comparison of Schistosoma haematobium, Schistosoma bovis and Echinostoma caproni
With the current paucity of vaccine targets for parasitic diseases, particularly those in childhood, the aim of this study was to compare protein expression and immune cross-reactivity between the trematodes Schistosoma haematobium, S. bovis and Echinostoma caproni in the hope of identifying novel i...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3179331/ https://www.ncbi.nlm.nih.gov/pubmed/21729355 http://dx.doi.org/10.1017/S0031182011000412 |
Sumario: | With the current paucity of vaccine targets for parasitic diseases, particularly those in childhood, the aim of this study was to compare protein expression and immune cross-reactivity between the trematodes Schistosoma haematobium, S. bovis and Echinostoma caproni in the hope of identifying novel intervention targets. Native adult parasite proteins were separated by 2-dimensional gel electrophoresis and identified through electrospray ionisation tandem mass spectrometry to produce a reference gel. Proteins from differential gel electrophoresis analyses of the three parasite proteomes were compared and screened against sera from hamsters infected with S. haematobium and E. caproni following 2-dimensional Western blotting. Differential protein expression between the three species was observed with circa 5% of proteins from S. haematobium showing expression up-regulation compared to the other two species. There was 91% similarity between the proteomes of the two Schistosoma species and 81% and 78·6% similarity between S. haematobium and S. bovis versus E. caproni, respectively. Although there were some common cross-species antigens, species-species targets were revealed which, despite evolutionary homology, could be due to phenotypic plasticity arising from different host-parasite relationships. Nevertheless, this approach helps to identify novel intervention targets which could be used as broad-spectrum candidates for future use in human and veterinary vaccines. |
---|