Cargando…

Thirty-five common variants for coronary artery disease: the fruits of much collaborative labour

Coronary artery disease (CAD) is the leading cause of death worldwide. Affected individuals cluster in families in patterns that reflect the sharing of numerous susceptibility genes. Genome-wide and large-scale gene-centric genotyping studies that involve tens of thousands of cases and controls have...

Descripción completa

Detalles Bibliográficos
Autores principales: Peden, John F., Farrall, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3179381/
https://www.ncbi.nlm.nih.gov/pubmed/21875899
http://dx.doi.org/10.1093/hmg/ddr384
Descripción
Sumario:Coronary artery disease (CAD) is the leading cause of death worldwide. Affected individuals cluster in families in patterns that reflect the sharing of numerous susceptibility genes. Genome-wide and large-scale gene-centric genotyping studies that involve tens of thousands of cases and controls have now mapped common disease variants to 34 distinct loci. Some coronary disease common variants show allelic heterogeneity or copy number variation. Some of the loci include candidate genes that imply conventional or emerging risk factor-mediated mechanisms of disease pathogenesis. Quantitative trait loci associations with risk factors have been informative in Mendelian randomization studies as well as fine-mapping of causative variants. But, for most loci, plausible mechanistic links are uncertain or obscure at present but provide potentially novel directions for research into this disease's pathogenesis. The common variants explain ∼4% of inter-individual variation in disease risk and no more than 13% of the total heritability of coronary disease. Although many CAD genes are presently undiscovered, it is likely that larger collaborative genome-wide association studies will map further common/low-penetrance variants and hoped that low-frequency or rare high-penetrance variants will also be identified in medical resequencing experiments.