Cargando…

Carbohydrate recognition and complement activation by rat ficolin-B

Ficolins are innate immune components that bind to PAMPs and structures on apoptotic cells. Humans produce two serum forms (L- and H-ficolin) and a leukocyte-associated form (M-ficolin), whereas rodents and most other mammals produce ficolins-A and -B, orthologues of L- and M-ficolin, respectively....

Descripción completa

Detalles Bibliográficos
Autores principales: Girija, Umakhanth Venkatraman, Mitchell, Daniel A, Roscher, Silke, Wallis, Russell
Formato: Online Artículo Texto
Lenguaje:English
Publicado: WILEY-VCH Verlag 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3179595/
https://www.ncbi.nlm.nih.gov/pubmed/21182092
http://dx.doi.org/10.1002/eji.201040612
Descripción
Sumario:Ficolins are innate immune components that bind to PAMPs and structures on apoptotic cells. Humans produce two serum forms (L- and H-ficolin) and a leukocyte-associated form (M-ficolin), whereas rodents and most other mammals produce ficolins-A and -B, orthologues of L- and M-ficolin, respectively. All three human ficolins, together with mouse and rat ficolin-A, associate with mannan-binding lectin-associated serine proteases (MASPs) and activate the lectin pathway of complement on PAMPs. By contrast, mouse ficolin-B does not bind MASPs and cannot activate complement. Because of these striking differences together with the lack of functional information for other ficolin-B orthologues, we have characterized rat ficolin-B, and compared its physical and biochemical properties with its serum counterpart. The data show that both rat ficolins have archetypal structures consisting of oligomers of a trimeric subunit. Ficolin-B recognized mainly sialyated sugars, characteristic of exogenous and endogenous ligands, whereas ficolin-A had a surprisingly narrow specificity, binding strongly to only one of 320 structures tested: an N-acetylated trisaccharide. Surprisingly, rat ficolin-B activated MASP-2 comparable to ficolin-A. Mutagenesis data reveal that lack of activity in mouse ficolin-B is probably caused by a single amino acid change in the putative MASP-binding site that blocks the ficolin-MASP interaction.