Cargando…
Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes.
In the course of systematic analysis of protein sequences containing the purine NTP-binding motif, a new superfamily was delineated which included 25 established or putative helicases of Escherichia coli, yeast, insects, mammals, pox- and herpesviruses, a yeast mitochondrial plasmid and three groups...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
1989
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC318027/ https://www.ncbi.nlm.nih.gov/pubmed/2546125 |
Sumario: | In the course of systematic analysis of protein sequences containing the purine NTP-binding motif, a new superfamily was delineated which included 25 established or putative helicases of Escherichia coli, yeast, insects, mammals, pox- and herpesviruses, a yeast mitochondrial plasmid and three groups of positive strand RNA viruses. These proteins contained 7 distinct highly conserved segments two of which corresponded to the "A" and "B" sites of the NTP-binding motif. Typical of the new superfamily was an abridged consensus for the "A" site, GxGKS/T, instead of the classical G/AxxxxGKS/T. Secondary structure predictions indicated that each of the conserved segments might constitute a separate structural unit centering at a beta-turn. All previously characterized mutations impairing the function of the yeast helicase RAD3 in DNA repair mapped to one of the conserved segments. A degree of similarity was revealed between the consensus pattern of conserved amino acid residues derived for the new superfamily and that of another recently described protein superfamily including a different set of prokaryotic, eukaryotic and viral (putative) helicases. |
---|