Cargando…

Engineered Neuronal Circuits: A New Platform for Studying the Role of Modular Topology

Neuron–glia cultures serve as a valuable model system for exploring the bio-molecular activity of single cells. Since neurons in culture can be conveniently recorded with great fidelity from many sites simultaneously, it has long been suggested that uniform cultured neurons may also be used to inves...

Descripción completa

Detalles Bibliográficos
Autores principales: Shein-Idelson, Mark, Ben-Jacob, Eshel, Hanein, Yael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Research Foundation 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3180629/
https://www.ncbi.nlm.nih.gov/pubmed/21991254
http://dx.doi.org/10.3389/fneng.2011.00010
Descripción
Sumario:Neuron–glia cultures serve as a valuable model system for exploring the bio-molecular activity of single cells. Since neurons in culture can be conveniently recorded with great fidelity from many sites simultaneously, it has long been suggested that uniform cultured neurons may also be used to investigate network-level mechanisms pertinent to information processing, activity propagation, memory, and learning. But how much of the functionality of neural circuits can be retained in vitro remains an open question. Recent studies utilizing patterned networks suggest that they provide a most useful platform to address fundamental questions in neuroscience. Here we review recent efforts in the realm of patterned networks’ activity investigations. We give a brief overview of the patterning methods and experimental approaches commonly employed in the field, and summarize the main results reported in the literature. The general picture that emerges from these reports indicates that patterned networks with uniform connectivity do not exhibit unique activity patterns. Rather, their activity is very similar to that of unpatterned uniform networks. However, by breaking the connectivity homogeneity, using a modular architecture, it is possible to introduce pronounced topology-related gating and delay effects. These findings suggest that patterned cultured networks may serve as a new platform for studying the role of modularity in neuronal circuits.