Cargando…

The Oxidative State of Chylomicron Remnants Influences Their Modulation of Human Monocyte Activation

Chylomicron remnants (CMRs) contribute directly to human monocyte activation in vitro, by increasing reactive oxygen species (ROS) production and cell migration. In this study, the effects of the oxidative state of CMR on the degree of monocyte activation was investigated. CMR-like particles (CRLPs)...

Descripción completa

Detalles Bibliográficos
Autores principales: Armengol Lopez, Sandra, Botham, Kathleen M., Lawson, Charlotte
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3180828/
https://www.ncbi.nlm.nih.gov/pubmed/21961069
http://dx.doi.org/10.1155/2012/942512
Descripción
Sumario:Chylomicron remnants (CMRs) contribute directly to human monocyte activation in vitro, by increasing reactive oxygen species (ROS) production and cell migration. In this study, the effects of the oxidative state of CMR on the degree of monocyte activation was investigated. CMR-like particles (CRLPs) were prepared in three different oxidative states, normal (CRLPs), protected from oxidation by incorporation of the antioxidant, probucol (pCRLPs), or oxidised with CuSO(4) (oxCRLPs). Lipid accumulation and ROS production were significantly increased in primary human monocytes incubated with CRLPs, whilst secretion on monocyte chemoattractant protein-1 was reduced, but oxCRLPs had no additional effect. In contrast, pCRLPs were taken up by monocytes to a lesser extent and had no significant effect on ROS or MCP-1 secretion. These studies suggest that the oxidative state of CMRs modulates their stimulation of the activation of peripheral blood human monocytes and that dietary antioxidants may provide some protection against these atherogenic effects.