Cargando…

Neurogenetics of emotional reactivity to stress in animals

There is much evidence for the involvement of central monoaminergic systems, the key targets of stress, in the regulation of mood. Animal and human findings indicate that genetics play a role in the etiology of mood disorders, and so we selected divergent inbred rat strains according to their anxiet...

Descripción completa

Detalles Bibliográficos
Autor principal: Chaouloff, Francis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Les Laboratoires Servier 2002
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3181699/
https://www.ncbi.nlm.nih.gov/pubmed/22034202
_version_ 1782212792405721088
author Chaouloff, Francis
author_facet Chaouloff, Francis
author_sort Chaouloff, Francis
collection PubMed
description There is much evidence for the involvement of central monoaminergic systems, the key targets of stress, in the regulation of mood. Animal and human findings indicate that genetics play a role in the etiology of mood disorders, and so we selected divergent inbred rat strains according to their anxiety-related behaviors on exposure to novel environments. We compared these strains for psychoneuroendocrine response to stressors and/or antidepressants. Molecular genetic studies were also performed to localize the genomic regions associated with these strain-dependent anxiety profiles. We then examined human results indicating that allelic variations in the serotonin transporter (5-HTT) may play a role in the etiology of neuroticism and depression. Thus, we compared inbred rat strains for the 5-HTT, with regard to central and peripheral (platelet) protein expression and function, and the consequences of local application of a selective serotonin reuptake inhibitor (SSRI) on extracellular serotonin (5-HT) levels. Our results indicate that spontaneously hypertensive rats and Lewis rats (LEW) selectively diverge in terms of anxiety-related behaviors and that this divergence is located on chromosome 4. The use of social defeat in LEW and the analysis of its psychoneuroendocrine consequences strongly suggest that such a paradigm, which is sensitive to repeated SSRI treatment, models posttraumatic stress disorder. The Wistar-Kyoto rat may be an adequate model to study the consequences of a genetically driven hypersensitivity to stress and noradrenergic antidepressants. Our most recent findings show that the Fischer 344 and LEW strains differ in protein expression and function of hippocampal and platelet 5-HTT; the divergence in protein expression is not due to allelic variations in the gene-coding sequences and leads to marked differences in extracellular 5-HT levels under basal conditions or SSRI. These examples illustrate how the use of inbred rat strains may complement our knowledge on the genetics of behavior, in the same way as the use of transgenic mice.
format Online
Article
Text
id pubmed-3181699
institution National Center for Biotechnology Information
language English
publishDate 2002
publisher Les Laboratoires Servier
record_format MEDLINE/PubMed
spelling pubmed-31816992011-10-27 Neurogenetics of emotional reactivity to stress in animals Chaouloff, Francis Dialogues Clin Neurosci Basic Research There is much evidence for the involvement of central monoaminergic systems, the key targets of stress, in the regulation of mood. Animal and human findings indicate that genetics play a role in the etiology of mood disorders, and so we selected divergent inbred rat strains according to their anxiety-related behaviors on exposure to novel environments. We compared these strains for psychoneuroendocrine response to stressors and/or antidepressants. Molecular genetic studies were also performed to localize the genomic regions associated with these strain-dependent anxiety profiles. We then examined human results indicating that allelic variations in the serotonin transporter (5-HTT) may play a role in the etiology of neuroticism and depression. Thus, we compared inbred rat strains for the 5-HTT, with regard to central and peripheral (platelet) protein expression and function, and the consequences of local application of a selective serotonin reuptake inhibitor (SSRI) on extracellular serotonin (5-HT) levels. Our results indicate that spontaneously hypertensive rats and Lewis rats (LEW) selectively diverge in terms of anxiety-related behaviors and that this divergence is located on chromosome 4. The use of social defeat in LEW and the analysis of its psychoneuroendocrine consequences strongly suggest that such a paradigm, which is sensitive to repeated SSRI treatment, models posttraumatic stress disorder. The Wistar-Kyoto rat may be an adequate model to study the consequences of a genetically driven hypersensitivity to stress and noradrenergic antidepressants. Our most recent findings show that the Fischer 344 and LEW strains differ in protein expression and function of hippocampal and platelet 5-HTT; the divergence in protein expression is not due to allelic variations in the gene-coding sequences and leads to marked differences in extracellular 5-HT levels under basal conditions or SSRI. These examples illustrate how the use of inbred rat strains may complement our knowledge on the genetics of behavior, in the same way as the use of transgenic mice. Les Laboratoires Servier 2002-12 /pmc/articles/PMC3181699/ /pubmed/22034202 Text en Copyright: © 2002 LLS http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc-nd/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Basic Research
Chaouloff, Francis
Neurogenetics of emotional reactivity to stress in animals
title Neurogenetics of emotional reactivity to stress in animals
title_full Neurogenetics of emotional reactivity to stress in animals
title_fullStr Neurogenetics of emotional reactivity to stress in animals
title_full_unstemmed Neurogenetics of emotional reactivity to stress in animals
title_short Neurogenetics of emotional reactivity to stress in animals
title_sort neurogenetics of emotional reactivity to stress in animals
topic Basic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3181699/
https://www.ncbi.nlm.nih.gov/pubmed/22034202
work_keys_str_mv AT chaoulofffrancis neurogeneticsofemotionalreactivitytostressinanimals