Cargando…

Regulation of cellular plasticity and resilience by mood stabilizers: the role of AMPA receptor trafficking

There is increasing evidence from a variety of sources that severe mood disorders are associated with regional reductions in brain volume, as well as reductions in the number, size, and density of glia and neurons in discrete brain areas. Although the precise pathophysiology underlying these morphom...

Descripción completa

Detalles Bibliográficos
Autores principales: Du, Jing, Quiroz, Jorge A., Gray, Neil A., Szabo, Steve T., Zarate Jr, Carlos A., Manji, Husseini K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Les Laboratoires Servier 2004
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3181801/
https://www.ncbi.nlm.nih.gov/pubmed/22034247
Descripción
Sumario:There is increasing evidence from a variety of sources that severe mood disorders are associated with regional reductions in brain volume, as well as reductions in the number, size, and density of glia and neurons in discrete brain areas. Although the precise pathophysiology underlying these morphometric changes remains to be fully elucidated, the data suggest that severe mood disorders are associated with impairments of structural plasticity and cellular resilience. In this context, it is noteworthy that a growing body of data suggests that the glutamaiergic system (which is known to play a major role in neuronal plasticity and cellular resilience) may be involved in the pathophysiology and treatment of mood disorders. Glutamate α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) GluR1 receptor trafficking plays a critical role in regulating various forms of neural plasticity. It is thus noteworthy that recent studies have shown that structurally dissimilar mood stabilizers lithium and valproate regulate GluR1 receptor subunit trafficking and localization at synapses. These studies suggest that regulation of glutamatergically mediated synaptic plasticity may play a role in the treatment of mood disorders, and raises the possibility that agents more directly affecting synaptic GluR1 represent novel therapies for these devastating illnesses.