Cargando…

A Glutathione Peroxidase, Intracellular Peptidases and the TOR Complexes Regulate Peptide Transporter PEPT-1 in C. elegans

The intestinal peptide transporter PEPT-1 in Caenorhabditis elegans is a rheogenic H(+)-dependent carrier responsible for the absorption of di- and tripeptides. Transporter-deficient pept-1(lg601) worms are characterized by impairments in growth, development and reproduction and develop a severe obe...

Descripción completa

Detalles Bibliográficos
Autores principales: Benner, Jacqueline, Daniel, Hannelore, Spanier, Britta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3182239/
https://www.ncbi.nlm.nih.gov/pubmed/21980510
http://dx.doi.org/10.1371/journal.pone.0025624
_version_ 1782212892120055808
author Benner, Jacqueline
Daniel, Hannelore
Spanier, Britta
author_facet Benner, Jacqueline
Daniel, Hannelore
Spanier, Britta
author_sort Benner, Jacqueline
collection PubMed
description The intestinal peptide transporter PEPT-1 in Caenorhabditis elegans is a rheogenic H(+)-dependent carrier responsible for the absorption of di- and tripeptides. Transporter-deficient pept-1(lg601) worms are characterized by impairments in growth, development and reproduction and develop a severe obesity like phenotype. The transport function of PEPT-1 as well as the influx of free fatty acids was shown to be dependent on the membrane potential and on the intracellular pH homeostasis, both of which are regulated by the sodium-proton exchanger NHX-2. Since many membrane proteins commonly function as complexes, there could be proteins that possibly modulate PEPT-1 expression and function. A systematic RNAi screening of 162 genes that are exclusively expressed in the intestine combined with a functional transport assay revealed four genes with homologues existing in mammals as predicted PEPT-1 modulators. While silencing of a glutathione peroxidase surprisingly caused an increase in PEPT-1 transport function, silencing of the ER to Golgi cargo transport protein and of two cytosolic peptidases reduced PEPT-1 transport activity and this even corresponded with lower PEPT-1 protein levels. These modifications of PEPT-1 function by gene silencing of homologous genes were also found to be conserved in the human epithelial cell line Caco-2/TC7 cells. Peptidase inhibition, amino acid supplementation and RNAi silencing of targets of rapamycin (TOR) components in C. elegans supports evidence that intracellular peptide hydrolysis and amino acid concentration are a part of a sensing system that controls PEPT-1 expression and function and that involves the TOR complexes TORC1 and TORC2.
format Online
Article
Text
id pubmed-3182239
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-31822392011-10-06 A Glutathione Peroxidase, Intracellular Peptidases and the TOR Complexes Regulate Peptide Transporter PEPT-1 in C. elegans Benner, Jacqueline Daniel, Hannelore Spanier, Britta PLoS One Research Article The intestinal peptide transporter PEPT-1 in Caenorhabditis elegans is a rheogenic H(+)-dependent carrier responsible for the absorption of di- and tripeptides. Transporter-deficient pept-1(lg601) worms are characterized by impairments in growth, development and reproduction and develop a severe obesity like phenotype. The transport function of PEPT-1 as well as the influx of free fatty acids was shown to be dependent on the membrane potential and on the intracellular pH homeostasis, both of which are regulated by the sodium-proton exchanger NHX-2. Since many membrane proteins commonly function as complexes, there could be proteins that possibly modulate PEPT-1 expression and function. A systematic RNAi screening of 162 genes that are exclusively expressed in the intestine combined with a functional transport assay revealed four genes with homologues existing in mammals as predicted PEPT-1 modulators. While silencing of a glutathione peroxidase surprisingly caused an increase in PEPT-1 transport function, silencing of the ER to Golgi cargo transport protein and of two cytosolic peptidases reduced PEPT-1 transport activity and this even corresponded with lower PEPT-1 protein levels. These modifications of PEPT-1 function by gene silencing of homologous genes were also found to be conserved in the human epithelial cell line Caco-2/TC7 cells. Peptidase inhibition, amino acid supplementation and RNAi silencing of targets of rapamycin (TOR) components in C. elegans supports evidence that intracellular peptide hydrolysis and amino acid concentration are a part of a sensing system that controls PEPT-1 expression and function and that involves the TOR complexes TORC1 and TORC2. Public Library of Science 2011-09-28 /pmc/articles/PMC3182239/ /pubmed/21980510 http://dx.doi.org/10.1371/journal.pone.0025624 Text en Benner et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Benner, Jacqueline
Daniel, Hannelore
Spanier, Britta
A Glutathione Peroxidase, Intracellular Peptidases and the TOR Complexes Regulate Peptide Transporter PEPT-1 in C. elegans
title A Glutathione Peroxidase, Intracellular Peptidases and the TOR Complexes Regulate Peptide Transporter PEPT-1 in C. elegans
title_full A Glutathione Peroxidase, Intracellular Peptidases and the TOR Complexes Regulate Peptide Transporter PEPT-1 in C. elegans
title_fullStr A Glutathione Peroxidase, Intracellular Peptidases and the TOR Complexes Regulate Peptide Transporter PEPT-1 in C. elegans
title_full_unstemmed A Glutathione Peroxidase, Intracellular Peptidases and the TOR Complexes Regulate Peptide Transporter PEPT-1 in C. elegans
title_short A Glutathione Peroxidase, Intracellular Peptidases and the TOR Complexes Regulate Peptide Transporter PEPT-1 in C. elegans
title_sort glutathione peroxidase, intracellular peptidases and the tor complexes regulate peptide transporter pept-1 in c. elegans
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3182239/
https://www.ncbi.nlm.nih.gov/pubmed/21980510
http://dx.doi.org/10.1371/journal.pone.0025624
work_keys_str_mv AT bennerjacqueline aglutathioneperoxidaseintracellularpeptidasesandthetorcomplexesregulatepeptidetransporterpept1incelegans
AT danielhannelore aglutathioneperoxidaseintracellularpeptidasesandthetorcomplexesregulatepeptidetransporterpept1incelegans
AT spanierbritta aglutathioneperoxidaseintracellularpeptidasesandthetorcomplexesregulatepeptidetransporterpept1incelegans
AT bennerjacqueline glutathioneperoxidaseintracellularpeptidasesandthetorcomplexesregulatepeptidetransporterpept1incelegans
AT danielhannelore glutathioneperoxidaseintracellularpeptidasesandthetorcomplexesregulatepeptidetransporterpept1incelegans
AT spanierbritta glutathioneperoxidaseintracellularpeptidasesandthetorcomplexesregulatepeptidetransporterpept1incelegans