Cargando…
Coma in fatal adult human malaria is not caused by cerebral oedema
BACKGROUND: The role of brain oedema in the pathophysiology of cerebral malaria is controversial. Coma associated with severe Plasmodium falciparum malaria is multifactorial, but associated with histological evidence of parasitized erythrocyte sequestration and resultant microvascular congestion in...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3182981/ https://www.ncbi.nlm.nih.gov/pubmed/21923924 http://dx.doi.org/10.1186/1475-2875-10-267 |
_version_ | 1782212960225067008 |
---|---|
author | Medana, Isabelle M Day, Nicholas PJ Sachanonta, Navakanit Mai, Nguyen TH Dondorp, Arjen M Pongponratn, Emsri Hien, Tran T White, Nicholas J Turner, Gareth DH |
author_facet | Medana, Isabelle M Day, Nicholas PJ Sachanonta, Navakanit Mai, Nguyen TH Dondorp, Arjen M Pongponratn, Emsri Hien, Tran T White, Nicholas J Turner, Gareth DH |
author_sort | Medana, Isabelle M |
collection | PubMed |
description | BACKGROUND: The role of brain oedema in the pathophysiology of cerebral malaria is controversial. Coma associated with severe Plasmodium falciparum malaria is multifactorial, but associated with histological evidence of parasitized erythrocyte sequestration and resultant microvascular congestion in cerebral vessels. To determine whether these changes cause breakdown of the blood-brain barrier and resultant perivascular or parenchymal cerebral oedema, histology, immunohistochemistry and image analysis were used to define the prevalence of histological patterns of oedema and the expression of specific molecular pathways involved in water balance in the brain in adults with fatal falciparum malaria. METHODS: The brains of 20 adult Vietnamese patients who died of severe malaria were examined for evidence of disrupted vascular integrity. Immunohistochemistry and image analysis was performed on brainstem sections for activation of the vascular endothelial growth factor (VEGF) receptor 2 and expression of the aquaporin 4 (AQP4) water channel protein. Fibrinogen immunostaining was assessed as evidence of blood-brain barrier leakage and perivascular oedema formation. Correlations were performed with clinical, biochemical and neuropathological parameters of severe malaria infection. RESULTS: The presence of oedema, plasma protein leakage and evidence of VEGF signalling were heterogeneous in fatal falciparum malaria and did not correlate with pre-mortem coma. Differences in vascular integrity were observed between brain regions with the greatest prevalence of disruption in the brainstem, compared to the cortex or midbrain. There was a statistically non-significant trend towards higher AQP4 staining in the brainstem of cases that presented with coma (P = .02). CONCLUSIONS: Histological evidence of cerebral oedema or immunohistochemical evidence of localised loss of vascular integrity did not correlate with the occurrence of pre-mortem coma in adults with fatal falciparum malaria. Enhanced expression of AQP4 water channels in the brainstem may, therefore, reflect a mix of both neuropathological or attempted neuroprotective responses to oedema formation. |
format | Online Article Text |
id | pubmed-3182981 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-31829812011-09-30 Coma in fatal adult human malaria is not caused by cerebral oedema Medana, Isabelle M Day, Nicholas PJ Sachanonta, Navakanit Mai, Nguyen TH Dondorp, Arjen M Pongponratn, Emsri Hien, Tran T White, Nicholas J Turner, Gareth DH Malar J Research BACKGROUND: The role of brain oedema in the pathophysiology of cerebral malaria is controversial. Coma associated with severe Plasmodium falciparum malaria is multifactorial, but associated with histological evidence of parasitized erythrocyte sequestration and resultant microvascular congestion in cerebral vessels. To determine whether these changes cause breakdown of the blood-brain barrier and resultant perivascular or parenchymal cerebral oedema, histology, immunohistochemistry and image analysis were used to define the prevalence of histological patterns of oedema and the expression of specific molecular pathways involved in water balance in the brain in adults with fatal falciparum malaria. METHODS: The brains of 20 adult Vietnamese patients who died of severe malaria were examined for evidence of disrupted vascular integrity. Immunohistochemistry and image analysis was performed on brainstem sections for activation of the vascular endothelial growth factor (VEGF) receptor 2 and expression of the aquaporin 4 (AQP4) water channel protein. Fibrinogen immunostaining was assessed as evidence of blood-brain barrier leakage and perivascular oedema formation. Correlations were performed with clinical, biochemical and neuropathological parameters of severe malaria infection. RESULTS: The presence of oedema, plasma protein leakage and evidence of VEGF signalling were heterogeneous in fatal falciparum malaria and did not correlate with pre-mortem coma. Differences in vascular integrity were observed between brain regions with the greatest prevalence of disruption in the brainstem, compared to the cortex or midbrain. There was a statistically non-significant trend towards higher AQP4 staining in the brainstem of cases that presented with coma (P = .02). CONCLUSIONS: Histological evidence of cerebral oedema or immunohistochemical evidence of localised loss of vascular integrity did not correlate with the occurrence of pre-mortem coma in adults with fatal falciparum malaria. Enhanced expression of AQP4 water channels in the brainstem may, therefore, reflect a mix of both neuropathological or attempted neuroprotective responses to oedema formation. BioMed Central 2011-09-17 /pmc/articles/PMC3182981/ /pubmed/21923924 http://dx.doi.org/10.1186/1475-2875-10-267 Text en Copyright ©2011 Medana et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Medana, Isabelle M Day, Nicholas PJ Sachanonta, Navakanit Mai, Nguyen TH Dondorp, Arjen M Pongponratn, Emsri Hien, Tran T White, Nicholas J Turner, Gareth DH Coma in fatal adult human malaria is not caused by cerebral oedema |
title | Coma in fatal adult human malaria is not caused by cerebral oedema |
title_full | Coma in fatal adult human malaria is not caused by cerebral oedema |
title_fullStr | Coma in fatal adult human malaria is not caused by cerebral oedema |
title_full_unstemmed | Coma in fatal adult human malaria is not caused by cerebral oedema |
title_short | Coma in fatal adult human malaria is not caused by cerebral oedema |
title_sort | coma in fatal adult human malaria is not caused by cerebral oedema |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3182981/ https://www.ncbi.nlm.nih.gov/pubmed/21923924 http://dx.doi.org/10.1186/1475-2875-10-267 |
work_keys_str_mv | AT medanaisabellem comainfataladulthumanmalariaisnotcausedbycerebraloedema AT daynicholaspj comainfataladulthumanmalariaisnotcausedbycerebraloedema AT sachanontanavakanit comainfataladulthumanmalariaisnotcausedbycerebraloedema AT mainguyenth comainfataladulthumanmalariaisnotcausedbycerebraloedema AT dondorparjenm comainfataladulthumanmalariaisnotcausedbycerebraloedema AT pongponratnemsri comainfataladulthumanmalariaisnotcausedbycerebraloedema AT hientrant comainfataladulthumanmalariaisnotcausedbycerebraloedema AT whitenicholasj comainfataladulthumanmalariaisnotcausedbycerebraloedema AT turnergarethdh comainfataladulthumanmalariaisnotcausedbycerebraloedema |