Cargando…

Effect of Trans-resveratrol on Rotenone-induced Cytotoxicity in Human Breast Adenocarcinoma Cells

Rotenone, a botanical insecticide is known to cause apoptosis in various cell types. Trans-resveratrol, a natural phytophenol present in red grapes and wine, is also well documented for its antioxidant, anti-inflammatory, anti-mutagenic, and anticarcinogenic activities. Therefore, the present invest...

Descripción completa

Detalles Bibliográficos
Autores principales: Siddiqui, M. A., Saquib, Q., Ahamed, M., Ahmad, J., Al-Khedhairy, A. A., Abou-Tarboush, F. M., Musarrat, J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications Pvt Ltd 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3183616/
https://www.ncbi.nlm.nih.gov/pubmed/21976814
http://dx.doi.org/10.4103/0971-6580.84261
Descripción
Sumario:Rotenone, a botanical insecticide is known to cause apoptosis in various cell types. Trans-resveratrol, a natural phytophenol present in red grapes and wine, is also well documented for its antioxidant, anti-inflammatory, anti-mutagenic, and anticarcinogenic activities. Therefore, the present investigations were carried out to assess the protective effect of trans-resveratrol against rotenone-induced cell death in human breast adenocarcinoma (MCF-7) cells. MCF-7 cells were exposed with various concentrations of rotenone for 24 h, and the loss in percent cell viability was evaluated by MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide] and neutral red uptake (NRU) assays. A significant decrease in percent cell viability in MCF-7 cells was observed at 50 μM and above concentrations of rotenone, as compared to untreated control. Furthermore, various concentrations (5, 10, and 25 μM) of trans-resveratrol were used to see its protective role on cell viability in rotenone-induced cell death in MCF-7 cells. Pre- or post- treatment of trans-resveratrol for 24 h was given to the cells. The data exhibited a significant dose dependent increase in the percent cell viability under pre- and post-treatment conditions. However, post-treatment of trans-resveratrol for 24 h after rotenone exposure to the cells was relatively less effective. Overall, the results suggest that trans-resveratrol significantly protects MCF-7 cells from rotenone-induced cell death. This model can be used as an effective and economical alternative to animal models for screening the antioxidant activity of a variety of natural compounds/drugs.