Cargando…

The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase

Posttranslational modification of proteins by poly(ADP-ribosyl)ation regulates many cellular pathways that are critical for genome stability, including DNA repair, chromatin structure, mitosis and apoptosis(1). Poly(ADP-ribose) (PAR) is composed of repeating ADP-ribose units linked via a unique glyc...

Descripción completa

Detalles Bibliográficos
Autores principales: Slade, Dea, Dunstan, Mark S., Barkauskaite, Eva, Weston, Ria, Lafite, Pierre, Dixon, Neil, Ahel, Marijan, Leys, David, Ahel, Ivan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3184140/
https://www.ncbi.nlm.nih.gov/pubmed/21892188
http://dx.doi.org/10.1038/nature10404
_version_ 1782213067922210816
author Slade, Dea
Dunstan, Mark S.
Barkauskaite, Eva
Weston, Ria
Lafite, Pierre
Dixon, Neil
Ahel, Marijan
Leys, David
Ahel, Ivan
author_facet Slade, Dea
Dunstan, Mark S.
Barkauskaite, Eva
Weston, Ria
Lafite, Pierre
Dixon, Neil
Ahel, Marijan
Leys, David
Ahel, Ivan
author_sort Slade, Dea
collection PubMed
description Posttranslational modification of proteins by poly(ADP-ribosyl)ation regulates many cellular pathways that are critical for genome stability, including DNA repair, chromatin structure, mitosis and apoptosis(1). Poly(ADP-ribose) (PAR) is composed of repeating ADP-ribose units linked via a unique glycosidic ribose-ribose bond, and is synthesised from NAD by poly(ADP-ribose) polymerases (PARPs)(1,2). Poly(ADP-ribose) glycohydrolase (PARG) is the only protein capable of specific hydrolysis of the ribose-ribose bonds present in PAR chains; its deficiency leads to cell death(3,4). Here we show that filamentous fungi and a number of bacteria possess a divergent form of PARG that exhibits all the main characteristics of the human PARG enzyme. We present the first PARG crystal structure (derived from the bacterium Thermomonospora curvata), which reveals that the PARG catalytic domain is a distant member of the ubiquitous ADP-ribose-binding macro domain family(5,6). High resolution structures of T. curvata PARG in complexes with ADP-ribose and the PARG inhibitor ADP-HPD, complemented by biochemical studies, allow us to propose a model for PAR binding and catalysis by PARG. Our insights into the PARG structure and catalytic mechanism should greatly improve our understanding of how PARG activity controls reversible protein poly(ADP-ribosyl)ation and potentially of how the defects in this regulation link to human disease.
format Online
Article
Text
id pubmed-3184140
institution National Center for Biotechnology Information
language English
publishDate 2011
record_format MEDLINE/PubMed
spelling pubmed-31841402012-03-29 The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase Slade, Dea Dunstan, Mark S. Barkauskaite, Eva Weston, Ria Lafite, Pierre Dixon, Neil Ahel, Marijan Leys, David Ahel, Ivan Nature Article Posttranslational modification of proteins by poly(ADP-ribosyl)ation regulates many cellular pathways that are critical for genome stability, including DNA repair, chromatin structure, mitosis and apoptosis(1). Poly(ADP-ribose) (PAR) is composed of repeating ADP-ribose units linked via a unique glycosidic ribose-ribose bond, and is synthesised from NAD by poly(ADP-ribose) polymerases (PARPs)(1,2). Poly(ADP-ribose) glycohydrolase (PARG) is the only protein capable of specific hydrolysis of the ribose-ribose bonds present in PAR chains; its deficiency leads to cell death(3,4). Here we show that filamentous fungi and a number of bacteria possess a divergent form of PARG that exhibits all the main characteristics of the human PARG enzyme. We present the first PARG crystal structure (derived from the bacterium Thermomonospora curvata), which reveals that the PARG catalytic domain is a distant member of the ubiquitous ADP-ribose-binding macro domain family(5,6). High resolution structures of T. curvata PARG in complexes with ADP-ribose and the PARG inhibitor ADP-HPD, complemented by biochemical studies, allow us to propose a model for PAR binding and catalysis by PARG. Our insights into the PARG structure and catalytic mechanism should greatly improve our understanding of how PARG activity controls reversible protein poly(ADP-ribosyl)ation and potentially of how the defects in this regulation link to human disease. 2011-09-04 /pmc/articles/PMC3184140/ /pubmed/21892188 http://dx.doi.org/10.1038/nature10404 Text en Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Slade, Dea
Dunstan, Mark S.
Barkauskaite, Eva
Weston, Ria
Lafite, Pierre
Dixon, Neil
Ahel, Marijan
Leys, David
Ahel, Ivan
The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase
title The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase
title_full The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase
title_fullStr The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase
title_full_unstemmed The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase
title_short The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase
title_sort structure and catalytic mechanism of a poly(adp-ribose) glycohydrolase
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3184140/
https://www.ncbi.nlm.nih.gov/pubmed/21892188
http://dx.doi.org/10.1038/nature10404
work_keys_str_mv AT sladedea thestructureandcatalyticmechanismofapolyadpriboseglycohydrolase
AT dunstanmarks thestructureandcatalyticmechanismofapolyadpriboseglycohydrolase
AT barkauskaiteeva thestructureandcatalyticmechanismofapolyadpriboseglycohydrolase
AT westonria thestructureandcatalyticmechanismofapolyadpriboseglycohydrolase
AT lafitepierre thestructureandcatalyticmechanismofapolyadpriboseglycohydrolase
AT dixonneil thestructureandcatalyticmechanismofapolyadpriboseglycohydrolase
AT ahelmarijan thestructureandcatalyticmechanismofapolyadpriboseglycohydrolase
AT leysdavid thestructureandcatalyticmechanismofapolyadpriboseglycohydrolase
AT ahelivan thestructureandcatalyticmechanismofapolyadpriboseglycohydrolase
AT sladedea structureandcatalyticmechanismofapolyadpriboseglycohydrolase
AT dunstanmarks structureandcatalyticmechanismofapolyadpriboseglycohydrolase
AT barkauskaiteeva structureandcatalyticmechanismofapolyadpriboseglycohydrolase
AT westonria structureandcatalyticmechanismofapolyadpriboseglycohydrolase
AT lafitepierre structureandcatalyticmechanismofapolyadpriboseglycohydrolase
AT dixonneil structureandcatalyticmechanismofapolyadpriboseglycohydrolase
AT ahelmarijan structureandcatalyticmechanismofapolyadpriboseglycohydrolase
AT leysdavid structureandcatalyticmechanismofapolyadpriboseglycohydrolase
AT ahelivan structureandcatalyticmechanismofapolyadpriboseglycohydrolase