Cargando…
Crystal Structure of the β(2)Adrenergic Receptor-Gs protein complex
G protein-coupled receptors (GPCRs) are responsible for the majority of cellular responses to hormones and neurotransmitters as well as the senses of sight, olfaction and taste. The paradigm of GPCR signaling is the activation of a heterotrimeric GTP binding protein (G protein) by an agonist-occupie...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3184188/ https://www.ncbi.nlm.nih.gov/pubmed/21772288 http://dx.doi.org/10.1038/nature10361 |
_version_ | 1782213076029800448 |
---|---|
author | Rasmussen, Søren G.F. DeVree, Brian T. Zou, Yaozhong Kruse, Andrew C. Chung, Ka Young Kobilka, Tong Sun Thian, Foon Sun Chae, Pil Seok Pardon, Els Calinski, Diane Mathiesen, Jesper M. Shah, Syed T. A. Lyons, Joseph A. Caffrey, Martin Gellman, Samuel H. Steyaert, Jan Skiniotis, Georgios Weis, William I. Sunahara, Roger K. Kobilka, Brian K. |
author_facet | Rasmussen, Søren G.F. DeVree, Brian T. Zou, Yaozhong Kruse, Andrew C. Chung, Ka Young Kobilka, Tong Sun Thian, Foon Sun Chae, Pil Seok Pardon, Els Calinski, Diane Mathiesen, Jesper M. Shah, Syed T. A. Lyons, Joseph A. Caffrey, Martin Gellman, Samuel H. Steyaert, Jan Skiniotis, Georgios Weis, William I. Sunahara, Roger K. Kobilka, Brian K. |
author_sort | Rasmussen, Søren G.F. |
collection | PubMed |
description | G protein-coupled receptors (GPCRs) are responsible for the majority of cellular responses to hormones and neurotransmitters as well as the senses of sight, olfaction and taste. The paradigm of GPCR signaling is the activation of a heterotrimeric GTP binding protein (G protein) by an agonist-occupied receptor. The β(2) adrenergic receptor (β(2)AR) activation of Gs, the stimulatory G protein for adenylyl cyclase, has long been a model system for GPCR signaling. Here we present the crystal structure of the active state ternary complex composed of agonist-occupied monomeric β(2)AR and nucleotide-free Gs heterotrimer. The principal interactions between the β(2)AR and Gs involve the amino and carboxyl terminal α-helices of Gs, with conformational changes propagating to the nucleotide-binding pocket. The largest conformational changes in the β(2)AR include a 14 Å outward movement at the cytoplasmic end of transmembrane segment 6 (TM6) and an alpha helical extension of the cytoplasmic end of TM5. The most surprising observation is a major displacement of the alpha helical domain of Gαs relative to the ras-like GTPase domain. This crystal structure represents the first high-resolution view of transmembrane signaling by a GPCR. |
format | Online Article Text |
id | pubmed-3184188 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
record_format | MEDLINE/PubMed |
spelling | pubmed-31841882012-03-29 Crystal Structure of the β(2)Adrenergic Receptor-Gs protein complex Rasmussen, Søren G.F. DeVree, Brian T. Zou, Yaozhong Kruse, Andrew C. Chung, Ka Young Kobilka, Tong Sun Thian, Foon Sun Chae, Pil Seok Pardon, Els Calinski, Diane Mathiesen, Jesper M. Shah, Syed T. A. Lyons, Joseph A. Caffrey, Martin Gellman, Samuel H. Steyaert, Jan Skiniotis, Georgios Weis, William I. Sunahara, Roger K. Kobilka, Brian K. Nature Article G protein-coupled receptors (GPCRs) are responsible for the majority of cellular responses to hormones and neurotransmitters as well as the senses of sight, olfaction and taste. The paradigm of GPCR signaling is the activation of a heterotrimeric GTP binding protein (G protein) by an agonist-occupied receptor. The β(2) adrenergic receptor (β(2)AR) activation of Gs, the stimulatory G protein for adenylyl cyclase, has long been a model system for GPCR signaling. Here we present the crystal structure of the active state ternary complex composed of agonist-occupied monomeric β(2)AR and nucleotide-free Gs heterotrimer. The principal interactions between the β(2)AR and Gs involve the amino and carboxyl terminal α-helices of Gs, with conformational changes propagating to the nucleotide-binding pocket. The largest conformational changes in the β(2)AR include a 14 Å outward movement at the cytoplasmic end of transmembrane segment 6 (TM6) and an alpha helical extension of the cytoplasmic end of TM5. The most surprising observation is a major displacement of the alpha helical domain of Gαs relative to the ras-like GTPase domain. This crystal structure represents the first high-resolution view of transmembrane signaling by a GPCR. 2011-07-19 /pmc/articles/PMC3184188/ /pubmed/21772288 http://dx.doi.org/10.1038/nature10361 Text en Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Rasmussen, Søren G.F. DeVree, Brian T. Zou, Yaozhong Kruse, Andrew C. Chung, Ka Young Kobilka, Tong Sun Thian, Foon Sun Chae, Pil Seok Pardon, Els Calinski, Diane Mathiesen, Jesper M. Shah, Syed T. A. Lyons, Joseph A. Caffrey, Martin Gellman, Samuel H. Steyaert, Jan Skiniotis, Georgios Weis, William I. Sunahara, Roger K. Kobilka, Brian K. Crystal Structure of the β(2)Adrenergic Receptor-Gs protein complex |
title | Crystal Structure of the β(2)Adrenergic Receptor-Gs protein complex |
title_full | Crystal Structure of the β(2)Adrenergic Receptor-Gs protein complex |
title_fullStr | Crystal Structure of the β(2)Adrenergic Receptor-Gs protein complex |
title_full_unstemmed | Crystal Structure of the β(2)Adrenergic Receptor-Gs protein complex |
title_short | Crystal Structure of the β(2)Adrenergic Receptor-Gs protein complex |
title_sort | crystal structure of the β(2)adrenergic receptor-gs protein complex |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3184188/ https://www.ncbi.nlm.nih.gov/pubmed/21772288 http://dx.doi.org/10.1038/nature10361 |
work_keys_str_mv | AT rasmussensørengf crystalstructureoftheb2adrenergicreceptorgsproteincomplex AT devreebriant crystalstructureoftheb2adrenergicreceptorgsproteincomplex AT zouyaozhong crystalstructureoftheb2adrenergicreceptorgsproteincomplex AT kruseandrewc crystalstructureoftheb2adrenergicreceptorgsproteincomplex AT chungkayoung crystalstructureoftheb2adrenergicreceptorgsproteincomplex AT kobilkatongsun crystalstructureoftheb2adrenergicreceptorgsproteincomplex AT thianfoonsun crystalstructureoftheb2adrenergicreceptorgsproteincomplex AT chaepilseok crystalstructureoftheb2adrenergicreceptorgsproteincomplex AT pardonels crystalstructureoftheb2adrenergicreceptorgsproteincomplex AT calinskidiane crystalstructureoftheb2adrenergicreceptorgsproteincomplex AT mathiesenjesperm crystalstructureoftheb2adrenergicreceptorgsproteincomplex AT shahsyedta crystalstructureoftheb2adrenergicreceptorgsproteincomplex AT lyonsjosepha crystalstructureoftheb2adrenergicreceptorgsproteincomplex AT caffreymartin crystalstructureoftheb2adrenergicreceptorgsproteincomplex AT gellmansamuelh crystalstructureoftheb2adrenergicreceptorgsproteincomplex AT steyaertjan crystalstructureoftheb2adrenergicreceptorgsproteincomplex AT skiniotisgeorgios crystalstructureoftheb2adrenergicreceptorgsproteincomplex AT weiswilliami crystalstructureoftheb2adrenergicreceptorgsproteincomplex AT sunahararogerk crystalstructureoftheb2adrenergicreceptorgsproteincomplex AT kobilkabriank crystalstructureoftheb2adrenergicreceptorgsproteincomplex |