Cargando…
Oncogenic Potential of Hepatitis C Virus Proteins
Chronic hepatitis C virus (HCV) infection is a major risk factor for liver disease progression, and may lead to cirrhosis and hepatocellular carcinoma (HCC). The HCV genome contains a single-stranded positive sense RNA with a cytoplasmic lifecycle. HCV proteins interact with many host-cell factors a...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3185750/ https://www.ncbi.nlm.nih.gov/pubmed/21994721 http://dx.doi.org/10.3390/v2092108 |
_version_ | 1782213259509628928 |
---|---|
author | Banerjee, Arup Ray, Ratna B. Ray, Ranjit |
author_facet | Banerjee, Arup Ray, Ratna B. Ray, Ranjit |
author_sort | Banerjee, Arup |
collection | PubMed |
description | Chronic hepatitis C virus (HCV) infection is a major risk factor for liver disease progression, and may lead to cirrhosis and hepatocellular carcinoma (HCC). The HCV genome contains a single-stranded positive sense RNA with a cytoplasmic lifecycle. HCV proteins interact with many host-cell factors and are involved in a wide range of activities, including cell cycle regulation, transcriptional regulation, cell proliferation, apoptosis, lipid metabolism, and cell growth promotion. Increasing experimental evidences suggest that HCV contributes to HCC by modulating pathways that may promote malignant transformation of hepatocytes. At least four of the 10 HCV gene products, namely core, NS3, NS5A and NS5B play roles in several potentially oncogenic pathways. Induction of both endoplasmic reticulum (ER) stress and oxidative stress by HCV proteins may also contribute to hepatocyte growth promotion. The current review identifies important functions of the viral proteins connecting HCV infections and potential for development of HCC. However, most of the putative transforming potentials of the HCV proteins have been defined in artificial cellular systems, and need to be established relevant to infection and disease models. The new insight into the mechanisms for HCV mediated disease progression may offer novel therapeutic targets for one of the most devastating human malignancies in the world today. |
format | Online Article Text |
id | pubmed-3185750 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Molecular Diversity Preservation International (MDPI) |
record_format | MEDLINE/PubMed |
spelling | pubmed-31857502011-10-12 Oncogenic Potential of Hepatitis C Virus Proteins Banerjee, Arup Ray, Ratna B. Ray, Ranjit Viruses Review Chronic hepatitis C virus (HCV) infection is a major risk factor for liver disease progression, and may lead to cirrhosis and hepatocellular carcinoma (HCC). The HCV genome contains a single-stranded positive sense RNA with a cytoplasmic lifecycle. HCV proteins interact with many host-cell factors and are involved in a wide range of activities, including cell cycle regulation, transcriptional regulation, cell proliferation, apoptosis, lipid metabolism, and cell growth promotion. Increasing experimental evidences suggest that HCV contributes to HCC by modulating pathways that may promote malignant transformation of hepatocytes. At least four of the 10 HCV gene products, namely core, NS3, NS5A and NS5B play roles in several potentially oncogenic pathways. Induction of both endoplasmic reticulum (ER) stress and oxidative stress by HCV proteins may also contribute to hepatocyte growth promotion. The current review identifies important functions of the viral proteins connecting HCV infections and potential for development of HCC. However, most of the putative transforming potentials of the HCV proteins have been defined in artificial cellular systems, and need to be established relevant to infection and disease models. The new insight into the mechanisms for HCV mediated disease progression may offer novel therapeutic targets for one of the most devastating human malignancies in the world today. Molecular Diversity Preservation International (MDPI) 2010-09-27 /pmc/articles/PMC3185750/ /pubmed/21994721 http://dx.doi.org/10.3390/v2092108 Text en © 2010 by the authors; licensee MDPI, Basel, Switzerland. http://creativecommons.org/licenses/by/3.0 This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Review Banerjee, Arup Ray, Ratna B. Ray, Ranjit Oncogenic Potential of Hepatitis C Virus Proteins |
title | Oncogenic Potential of Hepatitis C Virus Proteins |
title_full | Oncogenic Potential of Hepatitis C Virus Proteins |
title_fullStr | Oncogenic Potential of Hepatitis C Virus Proteins |
title_full_unstemmed | Oncogenic Potential of Hepatitis C Virus Proteins |
title_short | Oncogenic Potential of Hepatitis C Virus Proteins |
title_sort | oncogenic potential of hepatitis c virus proteins |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3185750/ https://www.ncbi.nlm.nih.gov/pubmed/21994721 http://dx.doi.org/10.3390/v2092108 |
work_keys_str_mv | AT banerjeearup oncogenicpotentialofhepatitiscvirusproteins AT rayratnab oncogenicpotentialofhepatitiscvirusproteins AT rayranjit oncogenicpotentialofhepatitiscvirusproteins |