Cargando…

Caging the Beast: TRIM5α Binding to the HIV-1 Core

The potent HIV-1 inhibitor TRIM5α blocks HIV-1 infection by accelerating the uncoating of HIV-1. TRIM5α is known to form higher-order self-association complexes that contribute to the avidity of TRIM5α for the HIV-1 capsid, and are essential to inhibit infection; these higher-order self-association...

Descripción completa

Detalles Bibliográficos
Autor principal: Diaz-Griffero, Felipe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3186010/
https://www.ncbi.nlm.nih.gov/pubmed/21994740
http://dx.doi.org/10.3390/v3050423
Descripción
Sumario:The potent HIV-1 inhibitor TRIM5α blocks HIV-1 infection by accelerating the uncoating of HIV-1. TRIM5α is known to form higher-order self-association complexes that contribute to the avidity of TRIM5α for the HIV-1 capsid, and are essential to inhibit infection; these higher-order self-association complexes are dependent upon an intact B-box 2 domain. Even though the ability to form higher-order self-association complexes resembles the clathrin triskelion that forms a protein array, or cage, around the endocytic vesicle, evidence for the ability of TRIM5α to assemble a similar type of structure surrounding the HIV-1 core has been lacking. Recent work by Ganser-Pornillos, Chandrasekaran and colleagues has now demonstrated the ability of the restriction factor TRIM5α to “cage” or “net” the HIV-1 core by forming an hexagonal array on the surface of the viral capsid [1]. This hexagonal array is strikingly similar in design to the array formed by the clathrin triskelion on the surface of the clathrin-coated endocytic vesicle. This remarkable finding represents an important advance on our understanding of the restriction factor TRIM5α, and suggests that TRIM5α cages the HIV-1 core in order to terminate infection. The present note discusses the implications of this discovery.