Cargando…

Increased hippocampal CA1 density of serotonergic terminals in a triple transgenic mouse model of Alzheimer's disease: an ultrastructural study

Alzheimer's disease (AD) is a neurodegenerative pathology that deteriorates mnesic functions and associated brain regions including the hippocampus. Serotonin (5-HT) has an important role in cognition. We recently demonstrated an increase in 5-HT transporter (SERT) fibre density in the hippocam...

Descripción completa

Detalles Bibliográficos
Autores principales: Noristani, H N, Meadows, R S, Olabarria, M, Verkhratsky, A, Rodríguez, J J
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3186898/
https://www.ncbi.nlm.nih.gov/pubmed/21918544
http://dx.doi.org/10.1038/cddis.2011.79
Descripción
Sumario:Alzheimer's disease (AD) is a neurodegenerative pathology that deteriorates mnesic functions and associated brain regions including the hippocampus. Serotonin (5-HT) has an important role in cognition. We recently demonstrated an increase in 5-HT transporter (SERT) fibre density in the hippocampal CA1 in an AD triple transgenic mouse model (3xTg-AD). Here, we analyse the ultrastructural localisation, distribution and numerical density (N(v)) of hippocampal SERT axons (SERT-Ax) and terminals (SERT-Te) and their relationship with SERT fibre sprouting and altered synaptic N(v) in 3xTg-AD compared with non-transgenic control mice. 3xTg-AD animals showed a significant increase in SERT-Te N(v) in CA1 at both, 3 (95%) and 18 months of age (144%), being restricted to the CA1 stratum moleculare (S. Mol; 227% at 3 and 180% at 18 months). 3xTg-AD animals also exhibit reduced N(v) of perforated axospinous synapses (PS) in CA1 S. Mol (56% at 3 and 52% at 18 months). No changes were observed in the N(v) of symmetric and asymmetrical synapses or SERT-Ax. Our results suggest that concomitant SERT-Te N(v) increase and PS reduction in 3xTg-AD mice may act as a compensatory mechanism maintaining synaptic efficacy as a response to the AD cognitive impairment.