Cargando…

Simultaneous recognition and segmentation of cells: application in C.elegans

Motivation: Automatic recognition of cell identities is critical for quantitative measurement, targeting and manipulation of cells of model animals at single-cell resolution. It has been shown to be a powerful tool for studying gene expression and regulation, cell lineages and cell fates. Existing m...

Descripción completa

Detalles Bibliográficos
Autores principales: Qu, Lei, Long, Fuhui, Liu, Xiao, Kim, Stuart, Myers, Eugene, Peng, Hanchuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3187651/
https://www.ncbi.nlm.nih.gov/pubmed/21849395
http://dx.doi.org/10.1093/bioinformatics/btr480
_version_ 1782213325252198400
author Qu, Lei
Long, Fuhui
Liu, Xiao
Kim, Stuart
Myers, Eugene
Peng, Hanchuan
author_facet Qu, Lei
Long, Fuhui
Liu, Xiao
Kim, Stuart
Myers, Eugene
Peng, Hanchuan
author_sort Qu, Lei
collection PubMed
description Motivation: Automatic recognition of cell identities is critical for quantitative measurement, targeting and manipulation of cells of model animals at single-cell resolution. It has been shown to be a powerful tool for studying gene expression and regulation, cell lineages and cell fates. Existing methods first segment cells, before applying a recognition algorithm in the second step. As a result, the segmentation errors in the first step directly affect and complicate the subsequent cell recognition step. Moreover, in new experimental settings, some of the image features that have been previously relied upon to recognize cells may not be easy to reproduce, due to limitations on the number of color channels available for fluorescent imaging or to the cost of building transgenic animals. An approach that is more accurate and relies on only a single signal channel is clearly desirable. Results: We have developed a new method, called simultaneous recognition and segmentation (SRS) of cells, and applied it to 3D image stacks of the model organism Caenorhabditis elegans. Given a 3D image stack of the animal and a 3D atlas of target cells, SRS is effectively an atlas-guided voxel classification process: cell recognition is realized by smoothly deforming the atlas to best fit the image, where the segmentation is obtained naturally via classification of all image voxels. The method achieved a 97.7% overall recognition accuracy in recognizing a key class of marker cells, the body wall muscle (BWM) cells, on a dataset of 175 C.elegans image stacks containing 14 118 manually curated BWM cells providing the ‘ground-truth’ for accuracy. This result was achieved without any additional fiducial image features. SRS also automatically identified 14 of the image stacks as involving ±90(○) rotations. With these stacks excluded from the dataset, the recognition accuracy rose to 99.1%. We also show SRS is generally applicable to other cell types, e.g. intestinal cells. Availability: The supplementary movies can be downloaded from our web site http://penglab.janelia.org/proj/celegans_seganno. The method has been implemented as a plug-in program within the V3D system (http://penglab.janelia.org/proj/v3d), and will be released in the V3D plugin source code repository. Contact: pengh@janelia.hhmi.org
format Online
Article
Text
id pubmed-3187651
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-31876512011-10-05 Simultaneous recognition and segmentation of cells: application in C.elegans Qu, Lei Long, Fuhui Liu, Xiao Kim, Stuart Myers, Eugene Peng, Hanchuan Bioinformatics Original Papers Motivation: Automatic recognition of cell identities is critical for quantitative measurement, targeting and manipulation of cells of model animals at single-cell resolution. It has been shown to be a powerful tool for studying gene expression and regulation, cell lineages and cell fates. Existing methods first segment cells, before applying a recognition algorithm in the second step. As a result, the segmentation errors in the first step directly affect and complicate the subsequent cell recognition step. Moreover, in new experimental settings, some of the image features that have been previously relied upon to recognize cells may not be easy to reproduce, due to limitations on the number of color channels available for fluorescent imaging or to the cost of building transgenic animals. An approach that is more accurate and relies on only a single signal channel is clearly desirable. Results: We have developed a new method, called simultaneous recognition and segmentation (SRS) of cells, and applied it to 3D image stacks of the model organism Caenorhabditis elegans. Given a 3D image stack of the animal and a 3D atlas of target cells, SRS is effectively an atlas-guided voxel classification process: cell recognition is realized by smoothly deforming the atlas to best fit the image, where the segmentation is obtained naturally via classification of all image voxels. The method achieved a 97.7% overall recognition accuracy in recognizing a key class of marker cells, the body wall muscle (BWM) cells, on a dataset of 175 C.elegans image stacks containing 14 118 manually curated BWM cells providing the ‘ground-truth’ for accuracy. This result was achieved without any additional fiducial image features. SRS also automatically identified 14 of the image stacks as involving ±90(○) rotations. With these stacks excluded from the dataset, the recognition accuracy rose to 99.1%. We also show SRS is generally applicable to other cell types, e.g. intestinal cells. Availability: The supplementary movies can be downloaded from our web site http://penglab.janelia.org/proj/celegans_seganno. The method has been implemented as a plug-in program within the V3D system (http://penglab.janelia.org/proj/v3d), and will be released in the V3D plugin source code repository. Contact: pengh@janelia.hhmi.org Oxford University Press 2011-10-15 2011-08-17 /pmc/articles/PMC3187651/ /pubmed/21849395 http://dx.doi.org/10.1093/bioinformatics/btr480 Text en © The Author(s) 2011. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/2.5 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Papers
Qu, Lei
Long, Fuhui
Liu, Xiao
Kim, Stuart
Myers, Eugene
Peng, Hanchuan
Simultaneous recognition and segmentation of cells: application in C.elegans
title Simultaneous recognition and segmentation of cells: application in C.elegans
title_full Simultaneous recognition and segmentation of cells: application in C.elegans
title_fullStr Simultaneous recognition and segmentation of cells: application in C.elegans
title_full_unstemmed Simultaneous recognition and segmentation of cells: application in C.elegans
title_short Simultaneous recognition and segmentation of cells: application in C.elegans
title_sort simultaneous recognition and segmentation of cells: application in c.elegans
topic Original Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3187651/
https://www.ncbi.nlm.nih.gov/pubmed/21849395
http://dx.doi.org/10.1093/bioinformatics/btr480
work_keys_str_mv AT qulei simultaneousrecognitionandsegmentationofcellsapplicationincelegans
AT longfuhui simultaneousrecognitionandsegmentationofcellsapplicationincelegans
AT liuxiao simultaneousrecognitionandsegmentationofcellsapplicationincelegans
AT kimstuart simultaneousrecognitionandsegmentationofcellsapplicationincelegans
AT myerseugene simultaneousrecognitionandsegmentationofcellsapplicationincelegans
AT penghanchuan simultaneousrecognitionandsegmentationofcellsapplicationincelegans