Cargando…

Duplication and Evolution of devA-Like Genes in Streptomyces Has Resulted in Distinct Developmental Roles

Understanding morphological transformations is essential to elucidating the evolution and developmental biology of many organisms. The Gram-positive soil bacterium, Streptomyces coelicolor has a complex lifecycle which lends itself well to such studies. We recently identified a transcriptional regul...

Descripción completa

Detalles Bibliográficos
Autores principales: Clark, Laura C., Hoskisson, Paul A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3187754/
https://www.ncbi.nlm.nih.gov/pubmed/21998634
http://dx.doi.org/10.1371/journal.pone.0025049
_version_ 1782213344379273216
author Clark, Laura C.
Hoskisson, Paul A.
author_facet Clark, Laura C.
Hoskisson, Paul A.
author_sort Clark, Laura C.
collection PubMed
description Understanding morphological transformations is essential to elucidating the evolution and developmental biology of many organisms. The Gram-positive soil bacterium, Streptomyces coelicolor has a complex lifecycle which lends itself well to such studies. We recently identified a transcriptional regulator, devA, which is required for correct sporulation in this organism, with mutants forming short, mis-septate aerial hyphae. devA is highly conserved within the Streptomyces genus along with a duplicate copy, devE. Disruption of devE indicates this gene also plays a role in sporulation; however the phenotype of a devE mutant differs from a devA mutant, forming long un-septate aerial hyphae. Transcriptional analysis of devA and devE indicates that they are expressed at different stages of the lifecycle. This suggests that following duplication they have diverged in regulation and function. Analysis of fully sequenced actinomycete genomes shows that devA is found in a single copy in morphologically simpler actinobacteria, suggesting that duplication has lead to increased morphological complexity. Complementation studies with devA from Salinispora, which sporulates but does not form aerial hyphae, indicates the ancestral gene cannot complement devA or devE, suggesting neo-functionalisation has occurred. Analysis of the synonymous and non-synonymous nucleotide changes within the devA paralogues suggest subfunctionalisation has occurred as both copies have diverged from the ancestral sequences. Divergence is also asymmetric with a higher level of functional constraint observed in the DNA binding domain compared with the effector binding/oligomerisation domain, suggesting diversification in the substrate specificity of these paralogues has contributed to their evolution.
format Online
Article
Text
id pubmed-3187754
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-31877542011-10-13 Duplication and Evolution of devA-Like Genes in Streptomyces Has Resulted in Distinct Developmental Roles Clark, Laura C. Hoskisson, Paul A. PLoS One Research Article Understanding morphological transformations is essential to elucidating the evolution and developmental biology of many organisms. The Gram-positive soil bacterium, Streptomyces coelicolor has a complex lifecycle which lends itself well to such studies. We recently identified a transcriptional regulator, devA, which is required for correct sporulation in this organism, with mutants forming short, mis-septate aerial hyphae. devA is highly conserved within the Streptomyces genus along with a duplicate copy, devE. Disruption of devE indicates this gene also plays a role in sporulation; however the phenotype of a devE mutant differs from a devA mutant, forming long un-septate aerial hyphae. Transcriptional analysis of devA and devE indicates that they are expressed at different stages of the lifecycle. This suggests that following duplication they have diverged in regulation and function. Analysis of fully sequenced actinomycete genomes shows that devA is found in a single copy in morphologically simpler actinobacteria, suggesting that duplication has lead to increased morphological complexity. Complementation studies with devA from Salinispora, which sporulates but does not form aerial hyphae, indicates the ancestral gene cannot complement devA or devE, suggesting neo-functionalisation has occurred. Analysis of the synonymous and non-synonymous nucleotide changes within the devA paralogues suggest subfunctionalisation has occurred as both copies have diverged from the ancestral sequences. Divergence is also asymmetric with a higher level of functional constraint observed in the DNA binding domain compared with the effector binding/oligomerisation domain, suggesting diversification in the substrate specificity of these paralogues has contributed to their evolution. Public Library of Science 2011-10-05 /pmc/articles/PMC3187754/ /pubmed/21998634 http://dx.doi.org/10.1371/journal.pone.0025049 Text en Clark, Hoskisson. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Clark, Laura C.
Hoskisson, Paul A.
Duplication and Evolution of devA-Like Genes in Streptomyces Has Resulted in Distinct Developmental Roles
title Duplication and Evolution of devA-Like Genes in Streptomyces Has Resulted in Distinct Developmental Roles
title_full Duplication and Evolution of devA-Like Genes in Streptomyces Has Resulted in Distinct Developmental Roles
title_fullStr Duplication and Evolution of devA-Like Genes in Streptomyces Has Resulted in Distinct Developmental Roles
title_full_unstemmed Duplication and Evolution of devA-Like Genes in Streptomyces Has Resulted in Distinct Developmental Roles
title_short Duplication and Evolution of devA-Like Genes in Streptomyces Has Resulted in Distinct Developmental Roles
title_sort duplication and evolution of deva-like genes in streptomyces has resulted in distinct developmental roles
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3187754/
https://www.ncbi.nlm.nih.gov/pubmed/21998634
http://dx.doi.org/10.1371/journal.pone.0025049
work_keys_str_mv AT clarklaurac duplicationandevolutionofdevalikegenesinstreptomyceshasresultedindistinctdevelopmentalroles
AT hoskissonpaula duplicationandevolutionofdevalikegenesinstreptomyceshasresultedindistinctdevelopmentalroles