Cargando…
Replication of Epstein-Barr Virus Primary Infection in Human Tonsil Tissue Explants
Epstein-Barr virus (EBV) may cause a variety of virus-associated diseases, but no antiviral agents have yet been developed against this virus. Animal models are thus indispensable for the pathological analysis of EBV-related infections and the elucidation of therapeutic methods. To establish a model...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3187765/ https://www.ncbi.nlm.nih.gov/pubmed/21998663 http://dx.doi.org/10.1371/journal.pone.0025490 |
_version_ | 1782213346869641216 |
---|---|
author | Gotoh, Kensei Ito, Yoshinori Maruo, Seiji Takada, Kenzo Mizuno, Terukazu Teranishi, Masaaki Nakata, Seiichi Nakashima, Tsutomu Iwata, Seiko Goshima, Fumi Nakamura, Shigeo Kimura, Hiroshi |
author_facet | Gotoh, Kensei Ito, Yoshinori Maruo, Seiji Takada, Kenzo Mizuno, Terukazu Teranishi, Masaaki Nakata, Seiichi Nakashima, Tsutomu Iwata, Seiko Goshima, Fumi Nakamura, Shigeo Kimura, Hiroshi |
author_sort | Gotoh, Kensei |
collection | PubMed |
description | Epstein-Barr virus (EBV) may cause a variety of virus-associated diseases, but no antiviral agents have yet been developed against this virus. Animal models are thus indispensable for the pathological analysis of EBV-related infections and the elucidation of therapeutic methods. To establish a model system for the study of EBV infection, we tested the ability of B95–8 virus and recombinant EBV expressing enhanced green fluorescent protein (EGFP) to replicate in human lymphoid tissue. Human tonsil tissues that had been surgically removed during routine tonsillectomy were sectioned into small blocks and placed on top of collagen sponge gels in culture medium at the air-interface, then a cell-free viral suspension was directly applied to the top of each tissue block. Increasing levels of EBV DNA in culture medium were observed after 12–15 days through 24 days post-infection in tissue models infected with B95–8 and EGFP-EBV. Expression levels of eight EBV-associated genes in cells collected from culture medium were increased during culture. EBV-encoded small RNA-positive cells were detected in the interfollicular areas in paraffin-embedded sections. Flow cytometric analyses revealed that most EGFP(+) cells were CD3(−) CD56(−) CD19(+) HLA-DR(+), and represented both naïve (immunoglobulin D(+)) and memory (CD27(+)) B cells. Moreover, EBV replication in this model was suppressed by acyclovir treatment in a dose-dependent manner. These data suggest that this model has potential for use in the pathological analysis of local tissues at the time of primary infection, as well as for screening novel antiviral agents. |
format | Online Article Text |
id | pubmed-3187765 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-31877652011-10-13 Replication of Epstein-Barr Virus Primary Infection in Human Tonsil Tissue Explants Gotoh, Kensei Ito, Yoshinori Maruo, Seiji Takada, Kenzo Mizuno, Terukazu Teranishi, Masaaki Nakata, Seiichi Nakashima, Tsutomu Iwata, Seiko Goshima, Fumi Nakamura, Shigeo Kimura, Hiroshi PLoS One Research Article Epstein-Barr virus (EBV) may cause a variety of virus-associated diseases, but no antiviral agents have yet been developed against this virus. Animal models are thus indispensable for the pathological analysis of EBV-related infections and the elucidation of therapeutic methods. To establish a model system for the study of EBV infection, we tested the ability of B95–8 virus and recombinant EBV expressing enhanced green fluorescent protein (EGFP) to replicate in human lymphoid tissue. Human tonsil tissues that had been surgically removed during routine tonsillectomy were sectioned into small blocks and placed on top of collagen sponge gels in culture medium at the air-interface, then a cell-free viral suspension was directly applied to the top of each tissue block. Increasing levels of EBV DNA in culture medium were observed after 12–15 days through 24 days post-infection in tissue models infected with B95–8 and EGFP-EBV. Expression levels of eight EBV-associated genes in cells collected from culture medium were increased during culture. EBV-encoded small RNA-positive cells were detected in the interfollicular areas in paraffin-embedded sections. Flow cytometric analyses revealed that most EGFP(+) cells were CD3(−) CD56(−) CD19(+) HLA-DR(+), and represented both naïve (immunoglobulin D(+)) and memory (CD27(+)) B cells. Moreover, EBV replication in this model was suppressed by acyclovir treatment in a dose-dependent manner. These data suggest that this model has potential for use in the pathological analysis of local tissues at the time of primary infection, as well as for screening novel antiviral agents. Public Library of Science 2011-10-05 /pmc/articles/PMC3187765/ /pubmed/21998663 http://dx.doi.org/10.1371/journal.pone.0025490 Text en Gotoh et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Gotoh, Kensei Ito, Yoshinori Maruo, Seiji Takada, Kenzo Mizuno, Terukazu Teranishi, Masaaki Nakata, Seiichi Nakashima, Tsutomu Iwata, Seiko Goshima, Fumi Nakamura, Shigeo Kimura, Hiroshi Replication of Epstein-Barr Virus Primary Infection in Human Tonsil Tissue Explants |
title | Replication of Epstein-Barr Virus Primary Infection in Human Tonsil Tissue Explants |
title_full | Replication of Epstein-Barr Virus Primary Infection in Human Tonsil Tissue Explants |
title_fullStr | Replication of Epstein-Barr Virus Primary Infection in Human Tonsil Tissue Explants |
title_full_unstemmed | Replication of Epstein-Barr Virus Primary Infection in Human Tonsil Tissue Explants |
title_short | Replication of Epstein-Barr Virus Primary Infection in Human Tonsil Tissue Explants |
title_sort | replication of epstein-barr virus primary infection in human tonsil tissue explants |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3187765/ https://www.ncbi.nlm.nih.gov/pubmed/21998663 http://dx.doi.org/10.1371/journal.pone.0025490 |
work_keys_str_mv | AT gotohkensei replicationofepsteinbarrvirusprimaryinfectioninhumantonsiltissueexplants AT itoyoshinori replicationofepsteinbarrvirusprimaryinfectioninhumantonsiltissueexplants AT maruoseiji replicationofepsteinbarrvirusprimaryinfectioninhumantonsiltissueexplants AT takadakenzo replicationofepsteinbarrvirusprimaryinfectioninhumantonsiltissueexplants AT mizunoterukazu replicationofepsteinbarrvirusprimaryinfectioninhumantonsiltissueexplants AT teranishimasaaki replicationofepsteinbarrvirusprimaryinfectioninhumantonsiltissueexplants AT nakataseiichi replicationofepsteinbarrvirusprimaryinfectioninhumantonsiltissueexplants AT nakashimatsutomu replicationofepsteinbarrvirusprimaryinfectioninhumantonsiltissueexplants AT iwataseiko replicationofepsteinbarrvirusprimaryinfectioninhumantonsiltissueexplants AT goshimafumi replicationofepsteinbarrvirusprimaryinfectioninhumantonsiltissueexplants AT nakamurashigeo replicationofepsteinbarrvirusprimaryinfectioninhumantonsiltissueexplants AT kimurahiroshi replicationofepsteinbarrvirusprimaryinfectioninhumantonsiltissueexplants |