Cargando…
Integration-Free iPS Cells Engineered Using Human Artificial Chromosome Vectors
Human artificial chromosomes (HACs) have unique characteristics as gene-delivery vectors, including episomal transmission and transfer of multiple, large transgenes. Here, we demonstrate the advantages of HAC vectors for reprogramming mouse embryonic fibroblasts (MEFs) into induced pluripotent stem...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3187830/ https://www.ncbi.nlm.nih.gov/pubmed/21998730 http://dx.doi.org/10.1371/journal.pone.0025961 |
Sumario: | Human artificial chromosomes (HACs) have unique characteristics as gene-delivery vectors, including episomal transmission and transfer of multiple, large transgenes. Here, we demonstrate the advantages of HAC vectors for reprogramming mouse embryonic fibroblasts (MEFs) into induced pluripotent stem (iPS) cells. Two HAC vectors (iHAC1 and iHAC2) were constructed. Both carried four reprogramming factors, and iHAC2 also encoded a p53-knockdown cassette. iHAC1 partially reprogrammed MEFs, and iHAC2 efficiently reprogrammed MEFs. Global gene expression patterns showed that the iHACs, unlike other vectors, generated relatively uniform iPS cells. Under non-selecting conditions, we established iHAC-free iPS cells by isolating cells that spontaneously lost iHAC2. Analyses of pluripotent markers, teratomas and chimeras confirmed that these iHAC-free iPS cells were pluripotent. Moreover, iHAC-free iPS cells with a re-introduced HAC encoding Herpes Simplex virus thymidine kinase were eliminated by ganciclovir treatment, indicating that the HAC safeguard system functioned in iPS cells. Thus, the HAC vector could generate uniform, integration-free iPS cells with a built-in safeguard system. |
---|