Cargando…
A statistical framework for modeling gene expression using chromatin features and application to modENCODE datasets
We develop a statistical framework to study the relationship between chromatin features and gene expression. This can be used to predict gene expression of protein coding genes, as well as microRNAs. We demonstrate the prediction in a variety of contexts, focusing particularly on the modENCODE worm...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3188797/ https://www.ncbi.nlm.nih.gov/pubmed/21324173 http://dx.doi.org/10.1186/gb-2011-12-2-r15 |
_version_ | 1782213413109235712 |
---|---|
author | Cheng, Chao Yan, Koon-Kiu Yip, Kevin Y Rozowsky, Joel Alexander, Roger Shou, Chong Gerstein, Mark |
author_facet | Cheng, Chao Yan, Koon-Kiu Yip, Kevin Y Rozowsky, Joel Alexander, Roger Shou, Chong Gerstein, Mark |
author_sort | Cheng, Chao |
collection | PubMed |
description | We develop a statistical framework to study the relationship between chromatin features and gene expression. This can be used to predict gene expression of protein coding genes, as well as microRNAs. We demonstrate the prediction in a variety of contexts, focusing particularly on the modENCODE worm datasets. Moreover, our framework reveals the positional contribution around genes (upstream or downstream) of distinct chromatin features to the overall prediction of expression levels. |
format | Online Article Text |
id | pubmed-3188797 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-31887972011-10-07 A statistical framework for modeling gene expression using chromatin features and application to modENCODE datasets Cheng, Chao Yan, Koon-Kiu Yip, Kevin Y Rozowsky, Joel Alexander, Roger Shou, Chong Gerstein, Mark Genome Biol Method We develop a statistical framework to study the relationship between chromatin features and gene expression. This can be used to predict gene expression of protein coding genes, as well as microRNAs. We demonstrate the prediction in a variety of contexts, focusing particularly on the modENCODE worm datasets. Moreover, our framework reveals the positional contribution around genes (upstream or downstream) of distinct chromatin features to the overall prediction of expression levels. BioMed Central 2011 2011-02-16 /pmc/articles/PMC3188797/ /pubmed/21324173 http://dx.doi.org/10.1186/gb-2011-12-2-r15 Text en Copyright ©2011 Cheng et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Method Cheng, Chao Yan, Koon-Kiu Yip, Kevin Y Rozowsky, Joel Alexander, Roger Shou, Chong Gerstein, Mark A statistical framework for modeling gene expression using chromatin features and application to modENCODE datasets |
title | A statistical framework for modeling gene expression using chromatin features and application to modENCODE datasets |
title_full | A statistical framework for modeling gene expression using chromatin features and application to modENCODE datasets |
title_fullStr | A statistical framework for modeling gene expression using chromatin features and application to modENCODE datasets |
title_full_unstemmed | A statistical framework for modeling gene expression using chromatin features and application to modENCODE datasets |
title_short | A statistical framework for modeling gene expression using chromatin features and application to modENCODE datasets |
title_sort | statistical framework for modeling gene expression using chromatin features and application to modencode datasets |
topic | Method |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3188797/ https://www.ncbi.nlm.nih.gov/pubmed/21324173 http://dx.doi.org/10.1186/gb-2011-12-2-r15 |
work_keys_str_mv | AT chengchao astatisticalframeworkformodelinggeneexpressionusingchromatinfeaturesandapplicationtomodencodedatasets AT yankoonkiu astatisticalframeworkformodelinggeneexpressionusingchromatinfeaturesandapplicationtomodencodedatasets AT yipkeviny astatisticalframeworkformodelinggeneexpressionusingchromatinfeaturesandapplicationtomodencodedatasets AT rozowskyjoel astatisticalframeworkformodelinggeneexpressionusingchromatinfeaturesandapplicationtomodencodedatasets AT alexanderroger astatisticalframeworkformodelinggeneexpressionusingchromatinfeaturesandapplicationtomodencodedatasets AT shouchong astatisticalframeworkformodelinggeneexpressionusingchromatinfeaturesandapplicationtomodencodedatasets AT gersteinmark astatisticalframeworkformodelinggeneexpressionusingchromatinfeaturesandapplicationtomodencodedatasets AT chengchao statisticalframeworkformodelinggeneexpressionusingchromatinfeaturesandapplicationtomodencodedatasets AT yankoonkiu statisticalframeworkformodelinggeneexpressionusingchromatinfeaturesandapplicationtomodencodedatasets AT yipkeviny statisticalframeworkformodelinggeneexpressionusingchromatinfeaturesandapplicationtomodencodedatasets AT rozowskyjoel statisticalframeworkformodelinggeneexpressionusingchromatinfeaturesandapplicationtomodencodedatasets AT alexanderroger statisticalframeworkformodelinggeneexpressionusingchromatinfeaturesandapplicationtomodencodedatasets AT shouchong statisticalframeworkformodelinggeneexpressionusingchromatinfeaturesandapplicationtomodencodedatasets AT gersteinmark statisticalframeworkformodelinggeneexpressionusingchromatinfeaturesandapplicationtomodencodedatasets |